Comptes Rendus
Article de recherche - Équations aux dérivées partielles, Physique mathématique
Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation
[Dynamique près de l’origine du scattering longue portée pour l’équation de Schrödinger unidimensionnelle]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1717-1742.

Nous considèrons l’équation de Schrödinger cubique sur la droite, pour laquelle la théorie du scattering demande des modifications dues aux effets à longue portée. Nous reprenons la construction de l’opérateur d’onde modifié, et rappelons la construction de son inverse, afin de décrire le comportement de ces opérateurs près de l’origine. Au premier ordre, ces opérateurs, dont la définition contient une modification non linéaire de la phase par rapport à la dynamique linéaire, coïncident avec l’identité. Nous calculons explicitement le premier correcteur du développement asymptotique, et justifions ce développement par des estimations d’erreur.

We consider the cubic Schrödinger equation on the line, for which the scattering theory requires modifications due to long range effects. We revisit the construction of the modified wave operator, and recall the construction of its inverse, in order to describe the asymptotic behavior of these operators near the origin. At leading order, these operators, whose definition includes a nonlinear modification in the phase compared to the linear dynamics, correspond to the identity. We compute explicitly the first corrector in the asymptotic expansion, and justify this expansion by error estimates.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.676
Classification : 35Q55, 35P25, 35B40
Keywords: Nonlinear Schrödinger equation, long range scattering, asymptotic expansion, error estimate
Mots-clés : Équation de Schrödinger non linéaire, scattering longue portée, développement asymptotique, estimation d’erreur

Rémi Carles 1

1 Univ Rennes, CNRS, IRMAR – UMR 6625, F-35000 Rennes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1717_0,
     author = {R\'emi Carles},
     title = {Dynamics near the origin of the long range scattering for the one-dimensional {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1717--1742},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.676},
     language = {en},
}
TY  - JOUR
AU  - Rémi Carles
TI  - Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1717
EP  - 1742
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.676
LA  - en
ID  - CRMATH_2024__362_G12_1717_0
ER  - 
%0 Journal Article
%A Rémi Carles
%T Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2024
%P 1717-1742
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.676
%G en
%F CRMATH_2024__362_G12_1717_0
Rémi Carles. Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1717-1742. doi : 10.5802/crmath.676. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.676/

[1] Jacqueline E. Barab Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., Volume 25 (1984) no. 11, pp. 3270-3273 | DOI | MR | Zbl

[2] R. Carles Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 41-67 | DOI | Zbl

[3] R. Carles; I. Gallagher Analyticity of the scattering operator for semilinear dispersive equations, Commun. Math. Phys., Volume 286 (2009) no. 3, pp. 1181-1209 | DOI | Zbl

[4] Gong Chen; Jason Murphy Recovery of the nonlinearity from the modified scattering map, Int. Math. Res. Not., Volume 2024 (2024) no. 8, pp. 6632-6655 | DOI | MR | Zbl

[5] Thierry Cazenave; Ivan Naumkin Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., Volume 274 (2018) no. 2, pp. 402-432 | DOI | MR | Zbl

[6] Jan Dereziński; Christian Gérard Scattering theory of classical and quantum N-particle systems, Texts and Monographs in Physics, Springer, 1997, xii+444 pages | DOI | MR | Zbl

[7] Zihua Guo; Nakao Hayashi; Yiquan Lin; Pavel I. Naumkin Modified scattering operator for the derivative nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 45 (2013) no. 6, pp. 3854-3871 | DOI | MR | Zbl

[8] J. Ginibre An introduction to nonlinear Schrödinger equations, Nonlinear waves (Sapporo, 1995) (R. Agemi; Y. Giga; T. Ozawa, eds.) (GAKUTO International Series, Math. Sciences and Appl.), Gakkōtosho, 1997, pp. 85-133 | Zbl

[9] Jean Ginibre; Giorgio Velo Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Differ. Equations, Volume 175 (2001) no. 2, pp. 415-501 | DOI | MR | Zbl

[10] Jean Ginibre; Giorgio Velo Long range scattering and modified wave operators for the Maxwell-Schrödinger system. II. The general case, Ann. Henri Poincaré, Volume 8 (2007) no. 5, pp. 917-994 | DOI | MR | Zbl

[11] Jean Ginibre; Giorgio Velo Long range scattering for the Maxwell-Schrödinger system with arbitrarily large asymptotic data, Hokkaido Math. J., Volume 37 (2008) no. 4, pp. 795-811 | DOI | MR | Zbl

[12] Jean Ginibre; Giorgio Velo Long range scattering for the wave-Schrödinger system revisited, J. Differ. Equations, Volume 252 (2012) no. 2, pp. 1642-1667 | DOI | MR | Zbl

[13] Jean Ginibre; Giorgio Velo Modified wave operators without loss of regularity for some long-range Hartree equations: I, Ann. Henri Poincaré, Volume 15 (2014) no. 5, pp. 829-862 | DOI | MR | Zbl

[14] Jean Ginibre; Giorgio Velo Modified wave operators without loss of regularity for some long range Hartree equations. II, Commun. Pure Appl. Anal., Volume 14 (2015) no. 4, pp. 1357-1376 | DOI | MR | Zbl

[15] Nakao Hayashi; Pavel I. Naumkin Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity, Commun. Math. Phys., Volume 267 (2006) no. 2, pp. 477-492 | DOI | MR | Zbl

[16] Nakao Hayashi; Pavel I. Naumkin Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 68 (1998) no. 2, pp. 159-177 | Numdam | MR | Zbl

[17] N. Hayashi; P. Naumkin Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998) no. 2, pp. 369-389 | DOI | Zbl

[18] Nakao Hayashi; Pavel I. Naumkin; Akihiro Shimomura; Satoshi Tonegawa Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differ. Equ., Volume 2004 (2004), 62, 16 pages | MR | Zbl

[19] Nakao Hayashi; Huimei Wang; Pavel I. Naumkin Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces, J. Hyperbolic Differ. Equ., Volume 8 (2011) no. 4, pp. 759-775 | DOI | MR | Zbl

[20] Rowan Killip; Jason Murphy; Monica Visan The scattering map determines the nonlinearity, Proc. Am. Math. Soc., Volume 151 (2023) no. 6, pp. 2543-2557 | DOI | MR | Zbl

[21] Rowan Killip; Jason Murphy; Monica Visan Determination of Schrödinger nonlinearities from the scattering map (2024) (https://arxiv.org/abs/2402.03218)

[22] Jun Kato; Fabio Pusateri A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011) no. 9-10, pp. 923-940 | Zbl

[23] Naoyasu Kita; Takeshi Wada Sharp asymptotic behavior of solutions to nonlinear Schrödinger equations in one space dimension, Funkc. Ekvacioj, Volume 45 (2002) no. 1, pp. 53-69 | MR | Zbl

[24] Hans Lindblad; Avy Soffer Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity, Volume 19 (2006) no. 2, pp. 345-353 | DOI | MR | Zbl

[25] Satoshi Masaki; Hayato Miyazaki Long range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 3251-3270 | DOI | MR | Zbl

[26] Satoshi Masaki; Hayato Miyazaki; Kota Uriya Long-range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimensions, Trans. Am. Math. Soc., Volume 371 (2019) no. 11, pp. 7925-7947 | DOI | MR | Zbl

[27] Kazunori Moriyama; Satoshi Tonegawa; Yoshio Tsutsumi Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., Volume 5 (2003) no. 6, pp. 983-996 | DOI | MR | Zbl

[28] Tohru Ozawa Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Volume 139 (1991) no. 3, pp. 479-493 | DOI | MR | Zbl

[29] Takeshi Wada A remark on long-range scattering for the Hartree type equation, Kyushu J. Math., Volume 54 (2000) no. 1, pp. 171-179 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique