[Dynamique près de l’origine du scattering longue portée pour l’équation de Schrödinger unidimensionnelle]
Nous considèrons l’équation de Schrödinger cubique sur la droite, pour laquelle la théorie du scattering demande des modifications dues aux effets à longue portée. Nous reprenons la construction de l’opérateur d’onde modifié, et rappelons la construction de son inverse, afin de décrire le comportement de ces opérateurs près de l’origine. Au premier ordre, ces opérateurs, dont la définition contient une modification non linéaire de la phase par rapport à la dynamique linéaire, coïncident avec l’identité. Nous calculons explicitement le premier correcteur du développement asymptotique, et justifions ce développement par des estimations d’erreur.
We consider the cubic Schrödinger equation on the line, for which the scattering theory requires modifications due to long range effects. We revisit the construction of the modified wave operator, and recall the construction of its inverse, in order to describe the asymptotic behavior of these operators near the origin. At leading order, these operators, whose definition includes a nonlinear modification in the phase compared to the linear dynamics, correspond to the identity. We compute explicitly the first corrector in the asymptotic expansion, and justify this expansion by error estimates.
Révisé le :
Accepté le :
Publié le :
Keywords: Nonlinear Schrödinger equation, long range scattering, asymptotic expansion, error estimate
Mots-clés : Équation de Schrödinger non linéaire, scattering longue portée, développement asymptotique, estimation d’erreur
Rémi Carles 1
@article{CRMATH_2024__362_G12_1717_0, author = {R\'emi Carles}, title = {Dynamics near the origin of the long range scattering for the one-dimensional {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1717--1742}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.676}, language = {en}, }
TY - JOUR AU - Rémi Carles TI - Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation JO - Comptes Rendus. Mathématique PY - 2024 SP - 1717 EP - 1742 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.676 LA - en ID - CRMATH_2024__362_G12_1717_0 ER -
Rémi Carles. Dynamics near the origin of the long range scattering for the one-dimensional Schrödinger equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1717-1742. doi : 10.5802/crmath.676. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.676/
[1] Nonexistence of asymptotically free solutions for a nonlinear Schrödinger equation, J. Math. Phys., Volume 25 (1984) no. 11, pp. 3270-3273 | DOI | MR | Zbl
[2] Geometric Optics and Long Range Scattering for One-Dimensional Nonlinear Schrödinger Equations, Commun. Math. Phys., Volume 220 (2001) no. 1, pp. 41-67 | DOI | Zbl
[3] Analyticity of the scattering operator for semilinear dispersive equations, Commun. Math. Phys., Volume 286 (2009) no. 3, pp. 1181-1209 | DOI | Zbl
[4] Recovery of the nonlinearity from the modified scattering map, Int. Math. Res. Not., Volume 2024 (2024) no. 8, pp. 6632-6655 | DOI | MR | Zbl
[5] Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., Volume 274 (2018) no. 2, pp. 402-432 | DOI | MR | Zbl
[6] Scattering theory of classical and quantum -particle systems, Texts and Monographs in Physics, Springer, 1997, xii+444 pages | DOI | MR | Zbl
[7] Modified scattering operator for the derivative nonlinear Schrödinger equation, SIAM J. Math. Anal., Volume 45 (2013) no. 6, pp. 3854-3871 | DOI | MR | Zbl
[8] An introduction to nonlinear Schrödinger equations, Nonlinear waves (Sapporo, 1995) (R. Agemi; Y. Giga; T. Ozawa, eds.) (GAKUTO International Series, Math. Sciences and Appl.), Gakkōtosho, 1997, pp. 85-133 | Zbl
[9] Long range scattering and modified wave operators for some Hartree type equations. III. Gevrey spaces and low dimensions, J. Differ. Equations, Volume 175 (2001) no. 2, pp. 415-501 | DOI | MR | Zbl
[10] Long range scattering and modified wave operators for the Maxwell-Schrödinger system. II. The general case, Ann. Henri Poincaré, Volume 8 (2007) no. 5, pp. 917-994 | DOI | MR | Zbl
[11] Long range scattering for the Maxwell-Schrödinger system with arbitrarily large asymptotic data, Hokkaido Math. J., Volume 37 (2008) no. 4, pp. 795-811 | DOI | MR | Zbl
[12] Long range scattering for the wave-Schrödinger system revisited, J. Differ. Equations, Volume 252 (2012) no. 2, pp. 1642-1667 | DOI | MR | Zbl
[13] Modified wave operators without loss of regularity for some long-range Hartree equations: I, Ann. Henri Poincaré, Volume 15 (2014) no. 5, pp. 829-862 | DOI | MR | Zbl
[14] Modified wave operators without loss of regularity for some long range Hartree equations. II, Commun. Pure Appl. Anal., Volume 14 (2015) no. 4, pp. 1357-1376 | DOI | MR | Zbl
[15] Domain and range of the modified wave operator for Schrödinger equations with a critical nonlinearity, Commun. Math. Phys., Volume 267 (2006) no. 2, pp. 477-492 | DOI | MR | Zbl
[16] Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 68 (1998) no. 2, pp. 159-177 | Numdam | MR | Zbl
[17] Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Am. J. Math., Volume 120 (1998) no. 2, pp. 369-389 | DOI | Zbl
[18] Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differ. Equ., Volume 2004 (2004), 62, 16 pages | MR | Zbl
[19] Modified wave operators for nonlinear Schrödinger equations in lower order Sobolev spaces, J. Hyperbolic Differ. Equ., Volume 8 (2011) no. 4, pp. 759-775 | DOI | MR | Zbl
[20] The scattering map determines the nonlinearity, Proc. Am. Math. Soc., Volume 151 (2023) no. 6, pp. 2543-2557 | DOI | MR | Zbl
[21] Determination of Schrödinger nonlinearities from the scattering map (2024) (https://arxiv.org/abs/2402.03218)
[22] A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differ. Integral Equ., Volume 24 (2011) no. 9-10, pp. 923-940 | Zbl
[23] Sharp asymptotic behavior of solutions to nonlinear Schrödinger equations in one space dimension, Funkc. Ekvacioj, Volume 45 (2002) no. 1, pp. 53-69 | MR | Zbl
[24] Scattering and small data completeness for the critical nonlinear Schrödinger equation, Nonlinearity, Volume 19 (2006) no. 2, pp. 345-353 | DOI | MR | Zbl
[25] Long range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity, SIAM J. Math. Anal., Volume 50 (2018) no. 3, pp. 3251-3270 | DOI | MR | Zbl
[26] Long-range scattering for nonlinear Schrödinger equations with critical homogeneous nonlinearity in three space dimensions, Trans. Am. Math. Soc., Volume 371 (2019) no. 11, pp. 7925-7947 | DOI | MR | Zbl
[27] Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., Volume 5 (2003) no. 6, pp. 983-996 | DOI | MR | Zbl
[28] Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Volume 139 (1991) no. 3, pp. 479-493 | DOI | MR | Zbl
[29] A remark on long-range scattering for the Hartree type equation, Kyushu J. Math., Volume 54 (2000) no. 1, pp. 171-179 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique