Comptes Rendus
Article de recherche - Probabilités
Non-uniform Berry–Esseen bounds via Malliavin–Stein method
[Limites de Berry–Esseen non uniformes par la méthode de Malliavin–Stein]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 455-463.

In this paper, we establish non-uniform Berry–Esseen bounds by means of the Malliavin–Stein method. Applications to the multiple Wiener–Itô integrals and the exponential functionals of Brownian motion are given to illustrate the theory.

Dans cet article, nous établissons des bornes de Berry–Esseen non uniformes au moyen de la méthode de Malliavin–Stein. Des applications aux intégrales multiples de Wiener–Itô et aux fonctions exponentielles du mouvement brownien sont données pour illustrer la théorie.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.688
Classification : 60F05, 60G15, 60H07
Keywords: Malliavin–Stein method, non-uniform Berry–Esseen bound
Mots-clés : Méthode de Malliavin–Stein, limite de Berry–Esseen non uniforme

Nguyen Tien Dung 1 ; Le Vi 1 ; Pham Thi Phuong Thuy 2

1 Department of Mathematics, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, 084 Vietnam
2 The faculty of Basic Sciences, Vietnam Air Defence and Air Force Academy, Son Tay, Hanoi, 084 Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_455_0,
     author = {Nguyen Tien Dung and Le Vi and Pham Thi Phuong Thuy},
     title = {Non-uniform {Berry{\textendash}Esseen} bounds via {Malliavin{\textendash}Stein} method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {455--463},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.688},
     language = {en},
}
TY  - JOUR
AU  - Nguyen Tien Dung
AU  - Le Vi
AU  - Pham Thi Phuong Thuy
TI  - Non-uniform Berry–Esseen bounds via Malliavin–Stein method
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 455
EP  - 463
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.688
LA  - en
ID  - CRMATH_2025__363_G5_455_0
ER  - 
%0 Journal Article
%A Nguyen Tien Dung
%A Le Vi
%A Pham Thi Phuong Thuy
%T Non-uniform Berry–Esseen bounds via Malliavin–Stein method
%J Comptes Rendus. Mathématique
%D 2025
%P 455-463
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.688
%G en
%F CRMATH_2025__363_G5_455_0
Nguyen Tien Dung; Le Vi; Pham Thi Phuong Thuy. Non-uniform Berry–Esseen bounds via Malliavin–Stein method. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 455-463. doi : 10.5802/crmath.688. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.688/

[1] Louis H. Y. Chen; Larry Goldstein; Qi-Man Shao Normal approximation by Stein’s method, Probability and Its Applications, Springer, 2011, xii+405 pages | DOI | MR | Zbl

[2] Daniel Dufresne The log-normal approximation in financial and other computations, Adv. Appl. Probab., Volume 36 (2004) no. 3, pp. 747-773 | DOI | MR | Zbl

[3] Péter Major Tail behaviour of multiple random integrals and U-statistics, Probab. Surv., Volume 2 (2005), pp. 448-505 | DOI | MR | Zbl

[4] Hiroyuki Matsumoto; Marc Yor Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv., Volume 2 (2005), pp. 312-347 | DOI | MR | Zbl

[5] Hiroyuki Matsumoto; Marc Yor Exponential functionals of Brownian motion. II. Some related diffusion processes, Probab. Surv., Volume 2 (2005), pp. 348-384 | DOI | MR | Zbl

[6] Tien Dung Nguyen; Nicolas Privault; Giovanni Luca Torrisi Gaussian estimates for the solutions of some one-dimensional stochastic equations, Potential Anal., Volume 43 (2015) no. 2, pp. 289-311 | DOI | MR | Zbl

[7] Ivan Nourdin; Giovanni Peccati Stein’s method on Wiener chaos, Probab. Theory Relat. Fields, Volume 145 (2009) no. 1-2, pp. 75-118 | DOI | MR | Zbl

[8] David Nualart The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006, xiv+382 pages | MR

[9] Marc Yor Exponential functionals of Brownian motion and related processes, Springer Finance, Springer, 2001, x+205 pages | DOI | MR

Cité par Sources :

Commentaires - Politique