[Limites de Berry–Esseen non uniformes par la méthode de Malliavin–Stein]
In this paper, we establish non-uniform Berry–Esseen bounds by means of the Malliavin–Stein method. Applications to the multiple Wiener–Itô integrals and the exponential functionals of Brownian motion are given to illustrate the theory.
Dans cet article, nous établissons des bornes de Berry–Esseen non uniformes au moyen de la méthode de Malliavin–Stein. Des applications aux intégrales multiples de Wiener–Itô et aux fonctions exponentielles du mouvement brownien sont données pour illustrer la théorie.
Accepté le :
Publié le :
Keywords: Malliavin–Stein method, non-uniform Berry–Esseen bound
Mots-clés : Méthode de Malliavin–Stein, limite de Berry–Esseen non uniforme
Nguyen Tien Dung 1 ; Le Vi 1 ; Pham Thi Phuong Thuy 2

@article{CRMATH_2025__363_G5_455_0, author = {Nguyen Tien Dung and Le Vi and Pham Thi Phuong Thuy}, title = {Non-uniform {Berry{\textendash}Esseen} bounds via {Malliavin{\textendash}Stein} method}, journal = {Comptes Rendus. Math\'ematique}, pages = {455--463}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.688}, language = {en}, }
TY - JOUR AU - Nguyen Tien Dung AU - Le Vi AU - Pham Thi Phuong Thuy TI - Non-uniform Berry–Esseen bounds via Malliavin–Stein method JO - Comptes Rendus. Mathématique PY - 2025 SP - 455 EP - 463 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.688 LA - en ID - CRMATH_2025__363_G5_455_0 ER -
Nguyen Tien Dung; Le Vi; Pham Thi Phuong Thuy. Non-uniform Berry–Esseen bounds via Malliavin–Stein method. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 455-463. doi : 10.5802/crmath.688. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.688/
[1] Normal approximation by Stein’s method, Probability and Its Applications, Springer, 2011, xii+405 pages | DOI | MR | Zbl
[2] The log-normal approximation in financial and other computations, Adv. Appl. Probab., Volume 36 (2004) no. 3, pp. 747-773 | DOI | MR | Zbl
[3] Tail behaviour of multiple random integrals and
[4] Exponential functionals of Brownian motion. I. Probability laws at fixed time, Probab. Surv., Volume 2 (2005), pp. 312-347 | DOI | MR | Zbl
[5] Exponential functionals of Brownian motion. II. Some related diffusion processes, Probab. Surv., Volume 2 (2005), pp. 348-384 | DOI | MR | Zbl
[6] Gaussian estimates for the solutions of some one-dimensional stochastic equations, Potential Anal., Volume 43 (2015) no. 2, pp. 289-311 | DOI | MR | Zbl
[7] Stein’s method on Wiener chaos, Probab. Theory Relat. Fields, Volume 145 (2009) no. 1-2, pp. 75-118 | DOI | MR | Zbl
[8] The Malliavin calculus and related topics, Probability and Its Applications, Springer, 2006, xiv+382 pages | MR
[9] Exponential functionals of Brownian motion and related processes, Springer Finance, Springer, 2001, x+205 pages | DOI | MR
Cité par Sources :
Commentaires - Politique