We show that for each , the systoles of closed hyperbolic -manifolds form a dense subset of . We also show that for any and any Salem number , there is a closed arithmetic hyperbolic -manifold of systole . In particular, the Salem conjecture holds if and only if the systoles of closed arithmetic hyperbolic manifolds in some (any) dimension fail to be dense in .
Nous démontrons que, pour tout , les systoles de variétés hyperboliques compactes sans bord de dimension constituent une partie dense de . Nous démontrons de plus que, pour tout et tout nombre de Salem , il existe une variété hyperbolique arithmétique compacte sans bord de dimension et de systole . En particulier, la conjecture de Salem est vraie si et seulement si les systoles de variétés hyperboliques arithmétiques compactes sans bord d’une certaine dimension (de manière équivalente, de dimension quelconque) ne sont pas denses dans .
Accepted:
Published online:
Keywords: Geometric topology, hyperbolic manifolds, systoles, arithmetic groups
Mots-clés : Topologie géométrique, variétés hyperboliques, systoles, groupes arithmétiques
Sami Douba 1; Junzhi Huang 2
@article{CRMATH_2024__362_G12_1819_0, author = {Sami Douba and Junzhi Huang}, title = {Density of systoles of hyperbolic manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1819--1824}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.689}, language = {en}, }
Sami Douba; Junzhi Huang. Density of systoles of hyperbolic manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1819-1824. doi : 10.5802/crmath.689. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/
[1] Systoles of hyperbolic 4-manifolds (2006) (https://arxiv.org/abs/math/0612290)
[2] The Bianchi groups are separable on geometrically finite subgroups, Ann. Math., Volume 153 (2001) no. 3, pp. 599-621 | DOI | MR | Zbl
[3] Salem numbers and the spectrum of hyperbolic surfaces, Int. Math. Res. Not., Volume 2020 (2020) no. 22, pp. 8234-8250 | DOI | MR | Zbl
[4] Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, Enseign. Math., Volume 46 (2000) no. 1-2, pp. 109-137 | MR | Zbl
[5] Arithmetic subgroups of algebraic groups, Ann. Math., Volume 75 (1962), pp. 485-535 | DOI | MR | Zbl
[6] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc., Volume 83 (2011) no. 2, pp. 431-448 | DOI | MR | Zbl
[7] Lectures on hyperbolic geometry, Universitext, Springer, 1992, xiv+330 pages | DOI | MR | Zbl
[8] Systoles of hyperbolic manifolds, Algebr. Geom. Topol., Volume 11 (2011) no. 3, pp. 1455-1469 | DOI | MR | Zbl
[9] Closed geodesics on semi-arithmetic Riemann surfaces, Math. Res. Lett., Volume 29 (2022) no. 4, pp. 961-1001 | DOI | MR | Zbl
[10] Systoles of hyperbolic hybrids (2023) (https://arxiv.org/abs/2309.16051)
[11] Salem numbers and arithmetic hyperbolic groups, Trans. Am. Math. Soc., Volume 372 (2019) no. 1, pp. 329-355 | DOI | MR | Zbl
[12] Bottom of the length spectrum of arithmetic orbifolds, Trans. Am. Math. Soc., Volume 376 (2023) no. 7, pp. 4745-4764 | DOI | MR | Zbl
[13] Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | DOI | MR | Zbl
[14] Automorphic spectra and the conformal bootstrap, Commun. Am. Math. Soc., Volume 4 (2024), pp. 1-63 | DOI | MR | Zbl
[15] Factorization of certain cyclotomic functions, Ann. Math., Volume 34 (1933) no. 3, pp. 461-479 | DOI | MR | Zbl
[16] Immersions and embeddings of totally geodesic surfaces, Bull. Lond. Math. Soc., Volume 19 (1987) no. 5, pp. 481-484 | DOI | MR | Zbl
[17] The limit points of the bass notes of arithmetic hyperbolic surfaces (2024) (https://arxiv.org/abs/2403.00928)
[18] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR | Zbl
[19] Quasi-conformal mappings in -space and the rigidity of hyperbolic space forms, Publ. Math., Inst. Hautes Étud. Sci., Volume 34 (1968), pp. 53-104 | DOI | Numdam | MR | Zbl
[20] Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) (Ohio State University Mathematical Research Institute Publications), Volume 1, Walter de Gruyter, 1992, pp. 273-310 | MR | Zbl
[21] Algebraic numbers and Fourier analysis, Selected reprints (The Wadsworth Mathematics Series), Wadsworth, 1983, p. iii+68 | MR | Zbl
[22] Subgroups of surface groups are almost geometric, J. Lond. Math. Soc., Volume 17 (1978) no. 3, pp. 555-565 | DOI | MR | Zbl
[23] Quasi-arithmeticity of lattices in , Geom. Dedicata, Volume 180 (2016), pp. 85-94 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy