[Différentielle du tenseur de déformation en toute dimension et applications aux géodésiques quotient]
La décomposition polaire , avec , et , suggère une action à droite du groupe orthogonal sur le groupe général linéaire . Équipé de la métrique de Frobenius, le fibré -principal devient une submersion Riemannienne. Dans cet article, nous obtenons une expression pour la dérivée en toute dimension de son unique section symétrique , en termes d’une solution d’une équation de Sylvester. Nous discutons comment résoudre ce type d’équation et vérifions que notre formule coïncide avec celles dérivées dans la littérature en basses dimensions. Nous appliquons notre résultat à la caractérisation des géodésiques de la métrique de Frobenius dans l’espace quotient .
The polar decomposition , with , , and , suggests a right action of the orthogonal group on the general linear group . Equipped with the Frobenius metric, the -principal bundle becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space .
Révisé le :
Accepté le :
Publié le :
Keywords: Polar Decomposition, stretch Tensor, quotient Geodesics
Mots-clés : Décomposition polaire, tenseur de déformation, géodésiques quotient
Olivier Bisson 1 ; Xavier Pennec 1
@article{CRMATH_2024__362_G12_1847_0, author = {Olivier Bisson and Xavier Pennec}, title = {Differential of the {Stretch} {Tensor} for {Any} {Dimension} with {Applications} to {Quotient} {Geodesics}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1847--1856}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.692}, language = {en}, }
TY - JOUR AU - Olivier Bisson AU - Xavier Pennec TI - Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics JO - Comptes Rendus. Mathématique PY - 2024 SP - 1847 EP - 1856 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.692 LA - en ID - CRMATH_2024__362_G12_1847_0 ER -
%0 Journal Article %A Olivier Bisson %A Xavier Pennec %T Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics %J Comptes Rendus. Mathématique %D 2024 %P 1847-1856 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.692 %G en %F CRMATH_2024__362_G12_1847_0
Olivier Bisson; Xavier Pennec. Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1847-1856. doi : 10.5802/crmath.692. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.692/
[1] On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., Volume 37 (2019) no. 2, pp. 165-191 | DOI | MR | Zbl
[2] How and why to solve the operator equation , Bull. Lond. Math. Soc., Volume 29 (1997) no. 1, pp. 1-21 | DOI | MR | Zbl
[3] Derivatives of the stretch and rotation tensors, J. Elasticity, Volume 32 (1993) no. 3, pp. 175-182 | DOI | MR | Zbl
[4] Riemannian geometry of matrix manifolds for Lagrangian uncertainty quantification of stochastic fluid flows, Master thesis, Massachusetts Institute of Technology (2017)
[5] Riemannian geometry, Universitext, Springer, 1990, xiv+284 pages | DOI | MR | Zbl
[6] Iterative computation of the Fréchet derivative of the polar decomposition, SIAM J. Matrix Anal. Appl., Volume 38 (2017) no. 4, pp. 1354-1379 | DOI | MR | Zbl
[7] Rates of stretch tensors, J. Elasticity, Volume 14 (1984) no. 3, pp. 263-267 | DOI | MR | Zbl
[8] Matrix Computations, Johns Hopkins University Press, 2013 | DOI | Zbl
[9] Lie groups, Lie algebras, and representations, Graduate Texts in Mathematics, 222, Springer, 2015, xiv+449 pages (An elementary introduction) | DOI | MR | Zbl
[10] On the derivative of the square root of a tensor and Guo’s rate theorems, J. Elasticity, Volume 14 (1984) no. 3, pp. 329-336 | DOI | MR | Zbl
[11] Foundations of differential geometry. I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl
[12] Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl., Volume 41 (2020) no. 1, pp. 171-198 | DOI | MR | Zbl
[13] Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., Volume 85 (2004) no. 2, pp. 501-522 | DOI
[14] Derivatives and rates of the stretch and rotation tensors, J. Elasticity, Volume 56 (1999) no. 3, pp. 213-230 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique