[Interpolation Brezzi–Douglas–Marini sur les simplexes et prismes anisotropes]
L’erreur d’interpolation de Brezzi–Douglas–Marini sur les éléments anisotropes a été analysée dans deux publications récentes, la première se concentrant sur les simplices avec des estimations dans , l’autre considérant les parallelotopes avec des estimations en termes de normes . Notre contribution fournit des estimations généralisées pour les simplexes anisotropes pour le cas , , et montre de nouvelles estimations pour les prismes anisotropes à base triangulaire.
The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in , the other considering parallelotopes with estimates in terms of -norms. This contribution provides generalized estimates for anisotropic simplices for the case, , and shows new estimates for anisotropic prisms with triangular base.
Révisé le :
Accepté le :
Publié le :
Volker Kempf 1
@article{CRMATH_2023__361_G1_437_0, author = {Volker Kempf}, title = {Brezzi{\textendash}Douglas{\textendash}Marini interpolation on anisotropic simplices and prisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {437--443}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.424}, language = {en}, }
Volker Kempf. Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 437-443. doi : 10.5802/crmath.424. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/
[1] Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra, Math. Comput., Volume 80 (2011) no. 273, pp. 141-163 | DOI | MR | Zbl
[2] Brezzi–Douglas–Marini interpolation of any order on anisotropic triangles and tetrahedra, SIAM J. Numer. Anal., Volume 58 (2020) no. 3, pp. 1696-1718 | DOI | MR | Zbl
[3] Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading, Calcolo, Volume 58 (2021) no. 2, 15 | DOI | MR | Zbl
[4] Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | Zbl
[5] Anisotropic -norm error estimates for rectangular -elements, Appl. Math. Lett., Volume 121 (2021), 107453 | DOI | MR | Zbl
[6] Pressure-robust discretizations for incompressible flow problems on anisotropic meshes, Doctoral Thesis, Universität der Bundeswehr München, Deutschland (2022)
[7] On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 782-800 | DOI | MR | Zbl
[8] A new family of mixed finite elements in , Numer. Math., Volume 50 (1986) no. 1, pp. 57-81 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique