[Interpolation Brezzi–Douglas–Marini sur les simplexes et prismes anisotropes]
L’erreur d’interpolation de Brezzi–Douglas–Marini sur les éléments anisotropes a été analysée dans deux publications récentes, la première se concentrant sur les simplices avec des estimations dans
The Brezzi–Douglas–Marini interpolation error on anisotropic elements has been analyzed in two recent publications, the first focusing on simplices with estimates in
Révisé le :
Accepté le :
Publié le :
Volker Kempf 1

@article{CRMATH_2023__361_G1_437_0, author = {Volker Kempf}, title = {Brezzi{\textendash}Douglas{\textendash}Marini interpolation on anisotropic simplices and prisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {437--443}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.424}, language = {en}, }
Volker Kempf. Brezzi–Douglas–Marini interpolation on anisotropic simplices and prisms. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 437-443. doi : 10.5802/crmath.424. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.424/
[1] Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra, Math. Comput., Volume 80 (2011) no. 273, pp. 141-163 | DOI | MR | Zbl
[2] Brezzi–Douglas–Marini interpolation of any order on anisotropic triangles and tetrahedra, SIAM J. Numer. Anal., Volume 58 (2020) no. 3, pp. 1696-1718 | DOI | MR | Zbl
[3] Pressure-robust error estimate of optimal order for the Stokes equations: domains with re-entrant edges and anisotropic mesh grading, Calcolo, Volume 58 (2021) no. 2, 15 | DOI | MR | Zbl
[4] Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | DOI | Zbl
[5] Anisotropic
[6] Pressure-robust discretizations for incompressible flow problems on anisotropic meshes, Doctoral Thesis, Universität der Bundeswehr München, Deutschland (2022)
[7] On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 782-800 | DOI | MR | Zbl
[8] A new family of mixed finite elements in
- Finite element methods for 3D interface problems on local anisotropic hybrid meshes, Calcolo, Volume 62 (2025) no. 1, p. 34 (Id/No 11) | DOI:10.1007/s10092-024-00633-w | Zbl:7978326
Cité par 1 document. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier