[Théorèmes de Liouville pour les équations de
This paper is concerned with possibly sign-changing solutions to the critical
Cet article s’intéresse aux solutions de l’équation critique de p-Laplace qui peuvent changer de signe.
Accepté le :
Publié le :
Keywords:
Mots-clés : Équations de
Diem Hang T. Le 1, 2 ; Phuong Le 3, 4

@article{CRMATH_2025__363_G6_571_0, author = {Diem Hang T. Le and Phuong Le}, title = {Liouville theorems for $p${-Laplace} equations with critical {Hardy{\textendash}H\'enon} exponents}, journal = {Comptes Rendus. Math\'ematique}, pages = {571--582}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.710}, language = {en}, }
TY - JOUR AU - Diem Hang T. Le AU - Phuong Le TI - Liouville theorems for $p$-Laplace equations with critical Hardy–Hénon exponents JO - Comptes Rendus. Mathématique PY - 2025 SP - 571 EP - 582 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.710 LA - en ID - CRMATH_2025__363_G6_571_0 ER -
Diem Hang T. Le; Phuong Le. Liouville theorems for $p$-Laplace equations with critical Hardy–Hénon exponents. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 571-582. doi : 10.5802/crmath.710. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.710/
[1] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | Numdam | MR | Zbl
[2] On the best constant for a weighted Sobolev–Hardy inequality, J. Lond. Math. Soc. (2), Volume 48 (1993) no. 1, pp. 137-151 | DOI | MR | Zbl
[3] Symmetry for positive critical points of Caffarelli–Kohn–Nirenberg inequalities, Nonlinear Anal., Theory Methods Appl., Volume 216 (2022), 112683, 23 pages | DOI | MR | Zbl
[4] Entire nodal solutions to the pure critical exponent problem arising from concentration, J. Differ. Equations, Volume 261 (2016) no. 6, pp. 3042-3060 | DOI | MR | Zbl
[5] Entire nodal solutions to the pure critical exponent problem for the
[6] Topologie et cas limite des injections de Sobolev, C. R. Math., Volume 299 (1984) no. 7, pp. 209-212 | MR | Zbl
[7] Liouville results for
[8]
[9] On a conformally invariant elliptic equation on
[10] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. R. Soc. Edinb., Sect. A, Math., Volume 93 (1982/83) no. 1-2, pp. 1-14 | DOI | MR | Zbl
[11] On the classification of solutions of the Lane–Emden equation on unbounded domains of
[12] A Liouville theorem for the
[13] Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Am. Math. Soc., Volume 352 (2000) no. 12, pp. 5703-5743 | DOI | MR | Zbl
[14] Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 879-902 | DOI | MR | Zbl
[15] Classification of positive solutions to
[16] Global compactness results for quasilinear elliptic problems with combined critical Sobolev–Hardy terms, Nonlinear Anal., Theory Methods Appl., Volume 74 (2011) no. 4, pp. 1445-1464 | DOI | MR | Zbl
[17] Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 12 (1988) no. 11, pp. 1203-1219 | DOI | MR | Zbl
[18] On Coron’s problem for the
[19] A global compactness result for the
[20] A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., Volume 31 (1982) no. 6, pp. 801-807 | DOI | MR | Zbl
[21] Large energy entire solutions for the Yamabe equation, J. Differ. Equations, Volume 251 (2011) no. 9, pp. 2568-2597 | DOI | MR | Zbl
[22] Existence, non-existence and regularity of radial ground states for
[23] Sharp pointwise estimates for weighted critical
[24] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), Volume 110 (1976), pp. 353-372 | DOI | MR | Zbl
[25] Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, Volume 51 (1984) no. 1, pp. 126-150 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique