[Caractérisation en algèbres d’opérateurs de la frontière de Poisson noncommutative]
Nous obtenons une caractérisation en algèbres opérateurs de la frontière de Furstenberg–Poisson noncommutative
We obtain an operator algebraic characterization of the noncommutative Furstenberg–Poisson boundary
Accepté le :
Publié le :
Keywords: Connes’ rigidity conjecture, higher rank lattices, noncommutative Furstenberg–Poisson boundaries, von Neumann algebras
Mots-clés : Conjecture de rigidité de Connes, réseaux de rang supérieur, frontières de Furstenberg–Poisson noncommutatives, algèbres de von Neumann
Cyril Houdayer 1

@article{CRMATH_2025__363_G2_199_0, author = {Cyril Houdayer}, title = {Operator algebraic characterization of the noncommutative {Poisson} boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--204}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.715}, language = {en}, }
Cyril Houdayer. Operator algebraic characterization of the noncommutative Poisson boundary. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 199-204. doi : 10.5802/crmath.715. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.715/
[1] An introduction to
[2] Charmenability of arithmetic groups of product type, Invent. Math., Volume 229 (2022) no. 3, pp. 929-985 | DOI | MR | Zbl
[3] Factor and normal subgroup theorems for lattices in products of groups, Invent. Math., Volume 163 (2006) no. 2, pp. 415-454 | DOI | MR | Zbl
[4] The noncommutative factor theorem for lattices in product groups, J. Éc. Polytech., Math., Volume 10 (2023), pp. 513-524 | DOI | MR | Zbl
[5] Poisson boundaries of
[6] A Poisson formula for semi-simple Lie groups, Ann. Math. (2), Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl
[7] Poisson boundaries and envelopes of discrete groups, Bull. Am. Math. Soc., Volume 73 (1967), pp. 350-356 | DOI | MR | Zbl
[8] Lyapunov exponents of a product of random matrices, Russ. Math. Surv., Volume 44 (1989) no. 5, pp. 11-71 | DOI | MR
[9] Tight inclusions of
[10] Noncommutative ergodic theory of higher rank lattices, ICM—International Congress of Mathematicians. Vol. 4. Sections 5–8, European Mathematical Society, 2023, pp. 3202-3223 | DOI | MR | Zbl
[11] Non-commutative Poisson boundaries, Discrete geometric analysis (Contemporary Mathematics), Volume 347, American Mathematical Society, 2004, pp. 69-81 | DOI | MR | Zbl
[12] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl
[13] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR
[14] The Poisson boundary of
[15] Noncommutative Poisson boundaries, ultraproducts, and entropy, Int. Math. Res. Not., Volume 2024 (2024) no. 10, pp. 8794-8818 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique