Comptes Rendus
Article de recherche - Théorie du contrôle
A new look at the controllability cost of linear evolution systems with a long gaze at localized data
[Un autre regard sur le coût de contrôle des systèmes d’évolutions linéaires, avec une attention particulière sur les données localisées]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 241-266.

Nous revisitons la question classique du coût de contrôle/d’observation des systèmes d’évolutions linéaires du premier ordre, en commençant par le cas des EDOs, avant de d’étendre l’analyse aux EDPs d’évolution, du premier ordre, en plusieurs dimensions d’espace. Notre analyse couvre le cas des systèmes hyperboliques et des systèmes pseudo-différentiels, notamment ceux obtenus par linéarisation en mécanique des fluides. En particulier, nous examinons le coût de contrôle de données initiales localisées et, dans le cas dispersif, de données initiales semi-classiquement micro-localisées.

We revisit the classical issue of the controllability/observability cost of linear first order evolution systems, starting with ODEs, before turning to some linear first order evolution PDEs in several space dimensions, including hyperbolic systems and pseudo-differential systems obtained by linearization in fluid mechanics. In particular we investigate the cost for localized initial data and, in the dispersive case, for initial data which are semiclassically microlocalized.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.725

Roberta Bianchini 1 ; Vincent Laheurte 2 ; Frank Sueur 3

1 Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo, 00185 Rome, Italy
2 IMB, Université de Bordeaux, France
3 Department of Mathematics, Maison du nombre, 6 avenue de la Fonte, University of Luxembourg, L-4364 Esch-sur-Alzette, Luxembourg
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G3_241_0,
     author = {Roberta Bianchini and Vincent Laheurte and Frank Sueur},
     title = {A new look at the controllability cost of linear evolution systems with a long gaze at localized data},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {241--266},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.725},
     language = {en},
}
TY  - JOUR
AU  - Roberta Bianchini
AU  - Vincent Laheurte
AU  - Frank Sueur
TI  - A new look at the controllability cost of linear evolution systems with a long gaze at localized data
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 241
EP  - 266
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.725
LA  - en
ID  - CRMATH_2025__363_G3_241_0
ER  - 
%0 Journal Article
%A Roberta Bianchini
%A Vincent Laheurte
%A Frank Sueur
%T A new look at the controllability cost of linear evolution systems with a long gaze at localized data
%J Comptes Rendus. Mathématique
%D 2025
%P 241-266
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.725
%G en
%F CRMATH_2025__363_G3_241_0
Roberta Bianchini; Vincent Laheurte; Frank Sueur. A new look at the controllability cost of linear evolution systems with a long gaze at localized data. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 241-266. doi : 10.5802/crmath.725. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.725/

[1] Marouane Assal Long time semiclassical Egorov theorem for -pseudodifferential systems, Asymptotic Anal., Volume 101 (2017) no. 1-2, pp. 17-67 | DOI | MR | Zbl

[2] Claude Bardos; Gilles Lebeau; Jeffrey Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | MR | Zbl

[3] Georges Bastin; Jean-Michel Coron Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, 88, Birkhäuser, 2016, xiv+307 pages | DOI | MR

[4] Sylvie Benzoni-Gavage; Denis Serre Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007, xxvi+508 pages | MR

[5] Jens Bolte; Rainer Glaser A semiclassical Egorov theorem and quantum ergodicity for matrix valued operators, Commun. Math. Phys., Volume 247 (2004) no. 2, pp. 391-419 | DOI | MR | Zbl

[6] Yann Brenier; Dmitry Vorotnikov On optimal transport of matrix-valued measures, SIAM J. Math. Anal., Volume 52 (2020) no. 3, pp. 2849-2873 | DOI | MR | Zbl

[7] Nicolas Burq; Gilles Lebeau Mesures de défaut de compacité, application au système de Lamé, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001) no. 6, pp. 817-870 | DOI | Numdam | MR | Zbl

[8] Piermarco Cannarsa; Giuseppe Floridia; Masahiro Yamamoto Observability inequalities for transport equations through Carleman estimates, Trends in control theory and partial differential equations (Springer INdAM Series), Volume 32, Springer, 2019, pp. 69-87 | DOI | MR | Zbl

[9] Heinz Otto Cordes A version of Egorov’s theorem for systems of hyperbolic pseudodifferential equations, J. Funct. Anal., Volume 48 (1982) no. 3, pp. 285-300 | DOI | MR | Zbl

[10] Jean-Michel Coron Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007, xiv+426 pages | DOI | MR

[11] Jean-Michel Coron; Hoai-Minh Nguyen On the optimal controllability time for linear hyperbolic systems with time-dependent coefficients (2021) | arXiv

[12] Yan Cui; Camille Laurent; Zhiqiang Wang On the observability inequality of coupled wave equations: the case without boundary, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 14, 37 pages | DOI | Numdam | MR | Zbl

[13] Belhassen Dehman; Jérôme Le Rousseau; Matthieu Léautaud Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 113-187 | DOI | MR | Zbl

[14] Belhassen Dehman; Gilles Lebeau Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 521-550 | DOI | MR | Zbl

[15] Ronald J. DiPerna; Pierre-Louis Lions Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR | Zbl

[16] Eduard Feireisl; Isabelle Gallagher; Antonín Novotný A singular limit for compressible rotating fluids, SIAM J. Math. Anal., Volume 44 (2012) no. 1, pp. 192-205 | DOI | MR | Zbl

[17] Clotilde Fermanian-Kammerer Multi-scale analysis and Schrödinger operators (2021) https://perso.math.u-pem.fr/fermanian.clotilde/M2_v3.pdf

[18] Giuseppe Floridia; Hiroshi Takase; Masahiro Yamamoto A Carleman estimate and an energy method for a first-order symmetric hyperbolic system, Inverse Probl. Imaging, Volume 16 (2022) no. 5, pp. 1163-1178 | DOI | MR | Zbl

[19] Isabelle Gallagher; Thierry Paul; Laure Saint-Raymond On the propagation of oceanic waves driven by a strong macroscopic flow, Nonlinear partial differential equations (Abel Symposia), Volume 7, Springer, 2012, pp. 231-254 | DOI | MR | Zbl

[20] Michael Herty; Ferdinand Thein Boundary feedback control for hyperbolic systems, ESAIM, Control Optim. Calc. Var., Volume 30 (2024), 71, 16 pages | DOI | MR | Zbl

[21] Vilmos Komornik Exact controllability and stabilization. The multiplier method, Research in Applied Mathematics, 36, Masson, 1994, viii+156 pages | MR

[22] Camille Laurent; Matthieu Léautaud Uniform observability estimates for linear waves, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1097-1136 | DOI | Numdam | MR | Zbl

[23] Gilles Lebeau Control for hyperbolic equations, Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992) (Lecture Notes in Control and Information Sciences), Volume 185, Springer, 1993, pp. 160-183 | DOI | MR | Zbl

[24] Gilles Lebeau Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Mathematical Physics Studies), Volume 19, Kluwer Academic Publishers, 1996, pp. 73-109 | DOI | MR | Zbl

[25] Nicolas Lerner Integrating the Wigner distribution on subsets of the phase space, a survey, Memoirs of the European Mathematical Society, 12, European Mathematical Society, 2024, viii+216 pages | DOI | MR

[26] Lipeng Ning; Tryphon Georgiou Metrics for matrix-valued measures via test functions, 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp. 2642-2647 | DOI

[27] Thomas I. Seidman How violent are fast controls?, Math. Control Signals Syst., Volume 1 (1988) no. 1, pp. 89-95 | DOI | MR | Zbl

[28] Herbert Spohn Semiclassical limit of the Dirac equation and spin precession, Ann. Phys., Volume 282 (2000) no. 2, pp. 420-431 | DOI | MR | Zbl

[29] Maciej Zworski Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique