[Un autre regard sur le coût de contrôle des systèmes d’évolutions linéaires, avec une attention particulière sur les données localisées]
Nous revisitons la question classique du coût de contrôle/d’observation des systèmes d’évolutions linéaires du premier ordre, en commençant par le cas des EDOs, avant de d’étendre l’analyse aux EDPs d’évolution, du premier ordre, en plusieurs dimensions d’espace. Notre analyse couvre le cas des systèmes hyperboliques et des systèmes pseudo-différentiels, notamment ceux obtenus par linéarisation en mécanique des fluides. En particulier, nous examinons le coût de contrôle de données initiales localisées et, dans le cas dispersif, de données initiales semi-classiquement micro-localisées.
We revisit the classical issue of the controllability/observability cost of linear first order evolution systems, starting with ODEs, before turning to some linear first order evolution PDEs in several space dimensions, including hyperbolic systems and pseudo-differential systems obtained by linearization in fluid mechanics. In particular we investigate the cost for localized initial data and, in the dispersive case, for initial data which are semiclassically microlocalized.
Révisé le :
Accepté le :
Publié le :
Roberta Bianchini 1 ; Vincent Laheurte 2 ; Frank Sueur 3

@article{CRMATH_2025__363_G3_241_0, author = {Roberta Bianchini and Vincent Laheurte and Frank Sueur}, title = {A new look at the controllability cost of linear evolution systems with a long gaze at localized data}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--266}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.725}, language = {en}, }
TY - JOUR AU - Roberta Bianchini AU - Vincent Laheurte AU - Frank Sueur TI - A new look at the controllability cost of linear evolution systems with a long gaze at localized data JO - Comptes Rendus. Mathématique PY - 2025 SP - 241 EP - 266 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.725 LA - en ID - CRMATH_2025__363_G3_241_0 ER -
%0 Journal Article %A Roberta Bianchini %A Vincent Laheurte %A Frank Sueur %T A new look at the controllability cost of linear evolution systems with a long gaze at localized data %J Comptes Rendus. Mathématique %D 2025 %P 241-266 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.725 %G en %F CRMATH_2025__363_G3_241_0
Roberta Bianchini; Vincent Laheurte; Frank Sueur. A new look at the controllability cost of linear evolution systems with a long gaze at localized data. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 241-266. doi : 10.5802/crmath.725. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.725/
[1] Long time semiclassical Egorov theorem for
[2] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | MR | Zbl
[3] Stability and boundary stabilization of 1-D hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, 88, Birkhäuser, 2016, xiv+307 pages | DOI | MR
[4] Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007, xxvi+508 pages | MR
[5] A semiclassical Egorov theorem and quantum ergodicity for matrix valued operators, Commun. Math. Phys., Volume 247 (2004) no. 2, pp. 391-419 | DOI | MR | Zbl
[6] On optimal transport of matrix-valued measures, SIAM J. Math. Anal., Volume 52 (2020) no. 3, pp. 2849-2873 | DOI | MR | Zbl
[7] Mesures de défaut de compacité, application au système de Lamé, Ann. Sci. Éc. Norm. Supér. (4), Volume 34 (2001) no. 6, pp. 817-870 | DOI | Numdam | MR | Zbl
[8] Observability inequalities for transport equations through Carleman estimates, Trends in control theory and partial differential equations (Springer INdAM Series), Volume 32, Springer, 2019, pp. 69-87 | DOI | MR | Zbl
[9] A version of Egorov’s theorem for systems of hyperbolic pseudodifferential equations, J. Funct. Anal., Volume 48 (1982) no. 3, pp. 285-300 | DOI | MR | Zbl
[10] Control and nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007, xiv+426 pages | DOI | MR
[11] On the optimal controllability time for linear hyperbolic systems with time-dependent coefficients (2021) | arXiv
[12] On the observability inequality of coupled wave equations: the case without boundary, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 14, 37 pages | DOI | Numdam | MR | Zbl
[13] Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 113-187 | DOI | MR | Zbl
[14] Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 521-550 | DOI | MR | Zbl
[15] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547 | DOI | MR | Zbl
[16] A singular limit for compressible rotating fluids, SIAM J. Math. Anal., Volume 44 (2012) no. 1, pp. 192-205 | DOI | MR | Zbl
[17] Multi-scale analysis and Schrödinger operators (2021) https://perso.math.u-pem.fr/fermanian.clotilde/M2_v3.pdf
[18] A Carleman estimate and an energy method for a first-order symmetric hyperbolic system, Inverse Probl. Imaging, Volume 16 (2022) no. 5, pp. 1163-1178 | DOI | MR | Zbl
[19] On the propagation of oceanic waves driven by a strong macroscopic flow, Nonlinear partial differential equations (Abel Symposia), Volume 7, Springer, 2012, pp. 231-254 | DOI | MR | Zbl
[20] Boundary feedback control for hyperbolic systems, ESAIM, Control Optim. Calc. Var., Volume 30 (2024), 71, 16 pages | DOI | MR | Zbl
[21] Exact controllability and stabilization. The multiplier method, Research in Applied Mathematics, 36, Masson, 1994, viii+156 pages | MR
[22] Uniform observability estimates for linear waves, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1097-1136 | DOI | Numdam | MR | Zbl
[23] Control for hyperbolic equations, Analysis and optimization of systems: state and frequency domain approaches for infinite-dimensional systems (Sophia-Antipolis, 1992) (Lecture Notes in Control and Information Sciences), Volume 185, Springer, 1993, pp. 160-183 | DOI | MR | Zbl
[24] Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993) (Mathematical Physics Studies), Volume 19, Kluwer Academic Publishers, 1996, pp. 73-109 | DOI | MR | Zbl
[25] Integrating the Wigner distribution on subsets of the phase space, a survey, Memoirs of the European Mathematical Society, 12, European Mathematical Society, 2024, viii+216 pages | DOI | MR
[26] Metrics for matrix-valued measures via test functions, 53rd IEEE Conference on Decision and Control, IEEE, 2014, pp. 2642-2647 | DOI
[27] How violent are fast controls?, Math. Control Signals Syst., Volume 1 (1988) no. 1, pp. 89-95 | DOI | MR | Zbl
[28] Semiclassical limit of the Dirac equation and spin precession, Ann. Phys., Volume 282 (2000) no. 2, pp. 420-431 | DOI | MR | Zbl
[29] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique