[L’indice d’isolement indépendant d’un arbre]
Let $G$ be a simple graph. An isolating set of $G$ is a set $I$ of vertices such that removing $I$ and its neighborhood leaves no edge. In addition, the set $I$ is said to be an independent isolating set of $G$ if $I$ is an isolating set of $G$ and $G[I]$ has no edge, where $G[I]$ represents the subgraph of $G$ induced by $I$. The independent isolation number of $G$, denoted by $\iota ^i(G)$, is the minimum cardinality of among all independent isolating sets of $G$. In this paper, we prove that for every tree $T$ except a star,
| \[ \frac{n(T)-\vert {L(T)}\vert -\vert {S(T)}\vert +3}{4}\le \iota ^i(T)\le \frac{n(T)- \vert {L(T)}\vert +2\vert {S(T)}\vert }{4}, \] |
where $n(T)$, $L(T)$ and $S(T)$ represent the order, the sets of leaves and support vertices, respectively. Finally, we characterize the extremal trees attaining the bounds.
Soit $G$ un graphe simple. Un ensemble isolant de $G$ est un ensemble $I$ de sommets tel que la suppression de $I$ et de son voisinage laisse le graphe sans arêtes. De plus, l’ensemble $I$ est dit un ensemble isolant indépendant de $G$ si $I$ est un ensemble isolant de $G$ et si $G[I]$ ne contient pas d’arêtes, où $G[I]$ représente le sous-graphe de $G$ induit par $I$. Le nombre d’isolement indépendant de $G$, noté $ \iota ^i(G)$, est la cardinalité minimum parmi tous les ensembles isolants indépendants de $G$. Dans cet article, nous prouvons que pour chaque arbre $T$ sauf une étoile,
| \[ \frac{n(T)-\vert {L(T)}\vert -\vert {S(T)}\vert +3}{4}\le \iota ^i(T)\le \frac{n(T)- \vert {L(T)}\vert +2\vert {S(T)}\vert }{4}, \] |
où $n(T)$, $L(T)$ et $S(T)$ représentent respectivement l’ordre de $T$, l’ensemble des feuilles et l’ensemble des sommets de support. Enfin, nous caractérisons les arbres extrémaux atteignant les bornes.
Accepté le :
Publié le :
Keywords: Tree, independent isolating set, independent isolation number
Mots-clés : Arbre, ensemble isolant indépendant, numéro d’isolation indépendant
Quanli Hao 1 ; Xinhui An 1 ; Baoyindureng Wu 1
CC-BY 4.0
@article{CRMATH_2025__363_G12_1289_0,
author = {Quanli Hao and Xinhui An and Baoyindureng Wu},
title = {The independent isolation number of a tree},
journal = {Comptes Rendus. Math\'ematique},
pages = {1289--1299},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.787},
language = {en},
}
Quanli Hao; Xinhui An; Baoyindureng Wu. The independent isolation number of a tree. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1289-1299. doi: 10.5802/crmath.787
[1] Disjoint isolating sets and graphs with maximum isolation number, Discrete Appl. Math., Volume 356 (2024), pp. 110-116 | DOI | MR | Zbl
[2] A new lower bound for the independent domination number of a tree, RAIRO, Oper. Res., Volume 57 (2023) no. 4, pp. 1951-1956 | DOI | MR | Zbl
[3] An improved upper bound on the domination number of a tree, Discrete Appl. Math., Volume 343 (2024), pp. 44-48 | DOI | MR | Zbl
[4] On the -domination number of graphs, AIMS Math., Volume 7 (2022) no. 6, pp. 10731-10743 | DOI | MR
[5] Further results on the total Italian domination number of trees, AIMS Math., Volume 8 (2023) no. 5, pp. 10654-10664 | DOI | MR
[6] Partial domination—the isolation number of a graph, Filomat, Volume 31 (2017) no. 12, pp. 3925-3944 | DOI | MR | Zbl
[7] Trees with equal 2-domination and 2-independence numbers, Discuss. Math., Graph Theory, Volume 32 (2012) no. 2, pp. 263-270 | DOI | MR | Zbl
[8] A note on independent vertex-edge domination in graphs, Discrete Optim., Volume 25 (2017), pp. 1-5 | DOI | MR | Zbl
[9] Domination number, independent domination number and 2-independence number in trees, Discuss. Math., Graph Theory, Volume 41 (2021) no. 1, pp. 39-49 | DOI | MR | Zbl
[10] A bound on the independent domination number of a tree, Vishwa Int. J. Graph Theory, Volume 1 (1992) no. 1, pp. 19-27 | MR
[11] Inequalities between the -isolation number and the independent -isolation number of a graph, Discrete Appl. Math., Volume 289 (2021), pp. 93-97 | DOI | MR | Zbl
[12] Bounds on the vertex-edge domination number of a tree, C. R. Math., Volume 352 (2014) no. 5, pp. 363-366 | DOI | MR | Numdam | Zbl
[13] Lower bound on the domination number of a tree, Discuss. Math., Graph Theory, Volume 24 (2004) no. 2, pp. 165-169 | DOI | MR | Zbl
[14] Vertex-edge and edge-vertex domination in graphs, Ph. D. Thesis, Clemson University (USA) (2007)
[15] Vertex-edge domination, Util. Math., Volume 81 (2010), pp. 193-213 | Zbl | MR
[16] A note on connected bipartite graphs having independent domination number half their order, Appl. Math. Lett., Volume 17 (2004) no. 8, pp. 959-962 | DOI | MR | Zbl
[17] Strong independence in graphs, Congr. Numerantium, Volume 29 (1980), pp. 639-656 | MR | Zbl
[18] Domination, independent domination and -independence in trees, Taiwanese J. Math., Volume 26 (2022) no. 2, pp. 221-231 | DOI | MR | Zbl
[19] 2-independent domination in trees, J. Oper. Res. Soc. China, Volume 12 (2024) no. 2, pp. 485-494 | DOI | MR | Zbl
[20] Partial domination of network modelling, AIMS Math., Volume 8 (2023) no. 10, pp. 24225-24232 | DOI | MR
Cité par Sources :
Commentaires - Politique
