[Caractérisations des normes de Sobolev et de la variation totale par des fonctionnelles non locales, et problèmes liés]
We briefly discuss the contribution of Haïm Brezis and his co-authors on the characterizations of the Sobolev norms and the total variation using non-local functionals. Some ideas of the analysis are given and new results are presented.
Nous discutons brièvement de la contribution de Haïm Brezis et de ses co-auteurs concernant les caractérisations des normes de Sobolev et de la variation totale en utilisant fonctionnelles non locales. Certaines idées de l’analyse sont présentées, ainsi que de nouveaux résultats.
Révisé le :
Accepté le :
Publié le :
Keywords: Sobolev norms, total variations, Gamma-convergence, inequalities, non-local functionals
Mots-clés : Normes de Sobolev, variation totale, Gamma-convergence, inégalités, fonctionnelles non locales
Hoai-Minh Nguyen 1
CC-BY 4.0
@article{CRMATH_2025__363_G13_1429_0,
author = {Hoai-Minh Nguyen},
title = {Characterizations of the {Sobolev} norms and the total variation via nonlocal functionals, and related problems},
journal = {Comptes Rendus. Math\'ematique},
pages = {1429--1455},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.802},
language = {en},
}
TY - JOUR AU - Hoai-Minh Nguyen TI - Characterizations of the Sobolev norms and the total variation via nonlocal functionals, and related problems JO - Comptes Rendus. Mathématique PY - 2025 SP - 1429 EP - 1455 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.802 LA - en ID - CRMATH_2025__363_G13_1429_0 ER -
%0 Journal Article %A Hoai-Minh Nguyen %T Characterizations of the Sobolev norms and the total variation via nonlocal functionals, and related problems %J Comptes Rendus. Mathématique %D 2025 %P 1429-1455 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.802 %G en %F CRMATH_2025__363_G13_1429_0
Hoai-Minh Nguyen. Characterizations of the Sobolev norms and the total variation via nonlocal functionals, and related problems. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1429-1455. doi: 10.5802/crmath.802
[1] Sobolev spaces, Pure and Applied Mathematics, Academic Press Inc., 1975 no. 65 | MR | Zbl
[2] Gamma-convergence of nonlocal perimeter functionals, Manuscr. Math., Volume 134 (2011) no. 3–4, pp. 377-403 | DOI | MR | Zbl
[3] Optimal constants for a nonlocal approximation of Sobolev norms and total variation, Anal. PDE, Volume 13 (2020) no. 2, pp. 595-625 | DOI | MR | Zbl
[4] Ginzburg–Landau vortices, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1994 no. 13 | DOI | MR | Zbl
[5] Another look at Sobolev spaces, Optimal control and partial differential equations (José Luis Menaldi; Edmundo Rofman; Agnès Sulem, eds.), IOS Press, 2001, pp. 439-455 | MR | Zbl
[6] Complements to the paper: “Lifting, degree, and distributional Jacobian revisited” (2004) | HAL
[7] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529-551 | DOI | MR | Zbl
[8] A new estimate for the topological degree, Comptes Rendus. Mathématique, Volume 340 (2005) no. 11, pp. 787-791 | DOI | MR | Numdam | Zbl
[9] A new characterization of Sobolev spaces, Comptes Rendus. Mathématique, Volume 343 (2006) no. 2, pp. 75-80 | DOI | MR | Numdam | Zbl
[10] How to recognize constant functions. A connection with Sobolev spaces, Usp. Mat. Nauk, Volume 57 (2002) no. 4(346), pp. 59-74 | DOI | MR | Zbl
[11] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011 | MR | Zbl | DOI
[12] Some of my favorite open problems, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 34 (2023) no. 2, pp. 307-335 | DOI | MR | Zbl
[13] On a new class of functions related to VMO, Comptes Rendus. Mathématique, Volume 349 (2011) no. 3–4, pp. 157-160 | DOI | MR | Numdam
[14] The BBM formula revisited, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 27 (2016) no. 4, pp. 515-533 | DOI | MR | Zbl
[15] Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | DOI | MR | Zbl
[16] -convergence of non-local, non-convex functionals in one dimension, Commun. Contemp. Math., Volume 22 (2020) no. 7, 1950077, 27 pages | DOI | MR | Zbl
[17] Sobolev spaces revisited, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 33 (2022) no. 2, pp. 413-437 | DOI | MR | Zbl
[18] Families of functionals representing Sobolev norms, Anal. PDE, Volume 17 (2024) no. 3, pp. 943-979 | DOI | MR | Zbl
[19] A surprising formula for Sobolev norms, Proc. Natl. Acad. Sci. USA, Volume 118 (2021) no. 8, e2025254118, 6 pages | DOI | MR | Zbl
[20] Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 4, 129, 12 pages | DOI | MR | Zbl
[21] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275 | MR | Numdam
[22] On an open question about functions of bounded variation, Calc. Var. Partial Differ. Equ., Volume 15 (2002) no. 4, pp. 519-527 | DOI | MR | Zbl
[23] New Brezis–Van Schaftingen–Yung–Sobolev type inequalities connected with maximal inequalities and one parameter families of operators, Adv. Math., Volume 411 (2022), 108774, 76 pages | DOI | MR | Zbl
[24] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992 | MR | Zbl
[25] Gamma-liminf estimate for a class of non-local approximations of Sobolev and BV norms, J. Funct. Anal., Volume 289 (2025) no. 9, 111106, 25 pages | DOI | MR | Zbl
[26] On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl
[27] Characterization of Sobolev and spaces, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2926-2958 | DOI | MR | Zbl
[28] Gagliardo–Nirenberg and Caffarelli–Kohn–Nirenberg interpolation inequalities associated with Coulomb–Sobolev spaces, J. Funct. Anal., Volume 283 (2022) no. 10, 109662, 33 pages | DOI | MR | Zbl
[29] Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, Springer, 2011 no. 342 | DOI | MR | Zbl
[30] On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002) no. 2, pp. 230-238 | DOI | MR | Zbl
[31] Some new characterizations of Sobolev spaces, J. Funct. Anal., Volume 237 (2006) no. 2, pp. 689-720 | DOI | MR
[32] -convergence and Sobolev norms, Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 679-684 | DOI | MR | Numdam
[33] Optimal constant in a new estimate for the degree, J. Anal. Math., Volume 101 (2007), pp. 367-395 | DOI | MR
[34] Further characterizations of Sobolev spaces, J. Eur. Math. Soc., Volume 10 (2008) no. 1, pp. 191-229 | MR | DOI
[35] -convergence, Sobolev norms, and BV functions, Duke Math. J., Volume 157 (2011) no. 3, pp. 495-533 | DOI | MR
[36] Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ., Volume 41 (2011) no. 3–4, pp. 483-509 | DOI | MR
[37] A refined estimate for the topological degree, Comptes Rendus. Mathématique, Volume 355 (2017) no. 10, pp. 1046-1049 | DOI | MR | Numdam
[38] New characterizations of magnetic Sobolev spaces, Adv. Nonlinear Anal., Volume 7 (2018) no. 2, pp. 227-245 | DOI | MR
[39] Fractional Caffarelli–Kohn–Nirenberg inequalities, J. Funct. Anal., Volume 274 (2018) no. 9, pp. 2661-2672 | DOI | MR
[40] On anisotropic Sobolev spaces, Commun. Contemp. Math., Volume 21 (2019) no. 1, 1850017, 13 pages | DOI | MR
[41] On Hardy and Caffarelli–Kohn–Nirenberg inequalities, J. Anal. Math., Volume 139 (2019) no. 2, pp. 773-797 | DOI | MR
[42] New estimates for a class of non-local approximations of the total variation, J. Funct. Anal., Volume 287 (2024) no. 1, 110419, 21 pages | DOI | MR
[43] Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula, Adv. Calc. Var., Volume 12 (2019) no. 3, pp. 225-252 | DOI | MR
[44] Some remarks on a formula for Sobolev norms due to Brezis, Van Schaftingen and Yung, J. Funct. Anal., Volume 282 (2022) no. 3, 109312, 47 pages | DOI | MR
[45] A new approach to Sobolev spaces and connections to -convergence, Calc. Var. Partial Differ. Equ., Volume 19 (2004) no. 3, pp. 229-255 | DOI | MR
[46] On formulae decoupling the total variation of BV functions, Nonlinear Anal., Theory Methods Appl., Volume 154 (2017), pp. 241-257 | DOI | MR
[47] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, Princeton University Press, 1970 no. 30 | MR
Cité par Sources :
Commentaires - Politique
