[Déterminants de laplaciens sur les discrétisations de surfaces plates et torsion analytique.]
Nous étudions le développement asymptotique des déterminants de laplaciens des graphes associés aux discrétisations d’une surface de demi-translation munie d’un fibré vectoriel hermitien plat. Ainsi, sur les discrétisations, nous mettons en relation les déterminants zêta-régularisés avec le développement asymptotique du nombre d’arbres couvrants et la fonction de partition des forêts couvrantes d’unicycles d’un poids déterminé par la monodromie de la connexion unitaire du fibré vectoriel hermitien.
We study the asymptotic expansion of the determinants of the graph Laplacians associated to discretizations of a half-translation surface endowed with a unitary flat vector bundle. By doing so, over the discretizations, we relate the asymptotic expansion of the number of spanning trees and the partition function of cycle-rooted spanning forests, weighted by the monodromy of the unitary connection of the vector bundle, to the corresponding zeta-regularized determinants.
Accepté le :
Publié le :
Siarhei Finski 1
@article{CRMATH_2020__358_6_743_0, author = {Siarhei Finski}, title = {Determinants of {Laplacians} on discretizations of flat surfaces and analytic torsion}, journal = {Comptes Rendus. Math\'ematique}, pages = {743--751}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.94}, language = {en}, }
Siarhei Finski. Determinants of Laplacians on discretizations of flat surfaces and analytic torsion. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 743-751. doi : 10.5802/crmath.94. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.94/
[1] Sobolev spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975 | MR | Zbl
[2] A Polyakov formula for sectors, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1773-1839 | DOI | MR | Zbl
[3] Spectral geometry of singular Riemannian spaces, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 575-657 | DOI | MR | Zbl
[4] Complex Analytic and Differential Geometry, 2012 www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
[5] Dimers and families of Cauchy-Riemann operators. I, J. Am. Math. Soc., Volume 28 (2015) no. 4, pp. 1063-1167 | DOI | MR | Zbl
[6] Asymptotics of height change on toroidal Temperleyan dimer models, J. Stat. Phys., Volume 159 (2015) no. 1, pp. 75-100 | DOI | MR | Zbl
[7] Discrete potential theory, Duke Math. J., Volume 20 (1953), pp. 233-252 | DOI | MR | Zbl
[8] Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice, J. Stat. Phys., Volume 51 (1988) no. 3-4, pp. 327-434 | DOI | MR | Zbl
[9] Finite-difference method on flat surfaces with a unitary flat vector bundle (2020) | arXiv
[10] Spanning trees, cycle-rooted spanning forests on discretizations of flat surfaces and analytic torsion (2020) | arXiv
[11] Determinants of Laplacians on graphs, Topology, Volume 32 (1993) no. 1, pp. 35-46 | DOI | MR | Zbl
[12] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985 | MR | Zbl
[13] Random curves on surfaces induced from the Laplacian determinant, Ann. Probab., Volume 45 (2017) no. 2, pp. 932-964 | DOI | MR | Zbl
[14] The asymptotic determinant of the discrete Laplacian, Acta Math., Volume 185 (2000) no. 2, pp. 239-286 | DOI | MR | Zbl
[15] The Laplacian and Dirac operators on critical planar graphs, Invent. Math., Volume 150 (2002) no. 2, pp. 409-439 | DOI | MR | Zbl
[16] Spanning forests and the vector bundle Laplacian, Ann. Probab., Volume 39 (2011) no. 5, pp. 1983-2017 | DOI | MR | Zbl
[17] Heat kernel asymptotics on manifolds with conic singularities, J. Anal. Math., Volume 78 (1999), pp. 1-36 | DOI | MR | Zbl
[18] Analytic torsion and R-torsion of Riemannian manifolds., Adv. Math., Volume 28 (1978), pp. 233-305 | DOI | MR | Zbl
[19] Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211 | DOI | MR | Zbl
[20] Analytic torsion, Partial differential equations (Derkeley, 1971) (Proceedings of Symposia in Pure Mathematics), Volume 23, American Mathematical Society, 1973, pp. 167-181 | Zbl
[21] Analytic torsion for complex manifolds, Ann. Math., Volume 98 (1973) no. 1, pp. 154-177 | MR | Zbl
[22] Methods of modern mathematical physics. II: Fourier analysis, self-adjointness, Academic Press Inc., 1975 | Zbl
[23] Flat surfaces, Frontiers in number theory, physics, and geometry I. On random matrices, zeta functions, and dynamical systems (Papers from the meeting, Les Houches, France, March 9–21, 2003), Springer, 2006, pp. 437-583 | Zbl
Cité par Sources :
Commentaires - Politique