[La méthode de Galerkine discontinue symétrique est stable en une dimension d'espace pour tout ordre polynômial
In this Note we prove that in one space dimension, the symmetric discontinuous Galerkin method for second order elliptic problems is stable for polynomial orders
Dans cette Note, nous montrons qu'en une dimension d'espace, la méthode de Galerkine discontinue symétrique pour les problèmes elliptiques d'ordre deux est stable pour tout ordre polynômial
Accepté le :
Publié le :
Erik Burman 1 ; Alexandre Ern 2 ; Igor Mozolevski 2, 3 ; Benjamin Stamm 1
@article{CRMATH_2007__345_10_599_0, author = {Erik Burman and Alexandre Ern and Igor Mozolevski and Benjamin Stamm}, title = {The symmetric discontinuous {Galerkin} method does not need stabilization in {1D} for polynomial orders $ p\ensuremath{\geqslant}2$}, journal = {Comptes Rendus. Math\'ematique}, pages = {599--602}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.10.028}, language = {en}, }
TY - JOUR AU - Erik Burman AU - Alexandre Ern AU - Igor Mozolevski AU - Benjamin Stamm TI - The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 599 EP - 602 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.10.028 LA - en ID - CRMATH_2007__345_10_599_0 ER -
%0 Journal Article %A Erik Burman %A Alexandre Ern %A Igor Mozolevski %A Benjamin Stamm %T The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$ %J Comptes Rendus. Mathématique %D 2007 %P 599-602 %V 345 %N 10 %I Elsevier %R 10.1016/j.crma.2007.10.028 %G en %F CRMATH_2007__345_10_599_0
Erik Burman; Alexandre Ern; Igor Mozolevski; Benjamin Stamm. The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p⩾2$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 10, pp. 599-602. doi : 10.1016/j.crma.2007.10.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.028/
[1] An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., Volume 19 (1982) no. 4, pp. 742-760
[2] Finite element methods for elliptic equations using nonconforming elements, Math. Comp., Volume 31 (1977), pp. 44-59
[3] E. Burman, B. Stamm, Low order discontinuous Galerkin methods for second order elliptic problems, Technical Report 04-2007, EPFL-IACS, 2007
[4] Discontinuous Galerkin methods for Friedrichs' systems. I. General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778
[5] Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case, Numer. Math., Volume 99 (2004), pp. 113-130
[6] Analysis of a nonsymmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates, SIAM J. Numer. Anal., Volume 42 (2004) no. 1, pp. 252-264
[7] A discontinuous hp finite element method for diffusion problems, J. Comput. Phys., Volume 146 (1998) no. 2, pp. 491-519
[8] A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2001) no. 3, pp. 902-931
- Mixed Discontinuous Galerkin Method for One-dimensional Biharmonic Equations without Penalty Terms, Journal of Physics: Conference Series, Volume 2660 (2023) no. 1, p. 012022 | DOI:10.1088/1742-6596/2660/1/012022
- Discontinuous Galerkin FEMs for a gradient beam in static carbon nanotube applications, Mathematical Methods in the Applied Sciences (2021) | DOI:10.1002/mma.7355
- Interior penalty discontinuous Galerkin FEMs for a gradient beam and cnts, Applied Numerical Mathematics, Volume 144 (2019), pp. 118-139 | DOI:10.1016/j.apnum.2019.05.020 | Zbl:1451.74188
- A mixed discontinuous Galerkin method without interior penalty for time-dependent fourth order problems, Journal of Scientific Computing, Volume 77 (2018) no. 1, pp. 467-501 | DOI:10.1007/s10915-018-0756-0 | Zbl:1407.65168
- A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation, Journal of Computational Physics, Volume 330 (2017), pp. 1069-1092 | DOI:10.1016/j.jcp.2016.09.062 | Zbl:1380.65360
- Discontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations, Journal of Computational and Applied Mathematics, Volume 299 (2016), pp. 68-91 | DOI:10.1016/j.cam.2015.10.024 | Zbl:1333.65129
- Discontinuous Galerkin derivative operators with applications to second-order elliptic problems and stability, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 18, pp. 5160-5182 | DOI:10.1002/mma.3440 | Zbl:1336.65190
- Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems, Numerische Mathematik, Volume 116 (2010) no. 2, pp. 213-241 | DOI:10.1007/s00211-010-0304-9 | Zbl:1207.65135
- Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 1-2, pp. 103-106 | DOI:10.1016/j.crma.2007.11.016 | Zbl:1133.65096
Cité par 9 documents. Sources : Crossref, zbMATH
Commentaires - Politique