Comptes Rendus
Numerical Analysis
A mixed PDE/Monte-Carlo method for stochastic volatility models
[Pricing d'option financière avec volatilité stochastique par une métode mixte EDP / Monte-Carlo]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 559-563.

We propose a pricing method for derivatives modeled by a set of stochastic differential equations with the objective of reducing the computing time. The speed up observed in our numerical implementation can be as large as 50. The method is based on a joint use of Monte-Carlo simulations and PDE or analytical formulas. The method is tested in the framework of the Heston stochastic volatility model with and without barriers.

Nous proposons dans cette note une méthode pour accélérer les calculs d'options financières modélis'ees par un système d'équations différentielles stochastiques. La méthode consiste à intégrer un groupe d'équation par une méthode de Monte-Carlo et les autres par une méthode déterministe, EDP ou formules de Black–Scholes. La méthode est présentée avec une justification euristique seulement sur le modl‘ele de Heston puis testée numériquement et comparée à une solution Monte-Carlo classique du modlèle de Heston. Les simulations numériques montrent qu'on peut obtenir un facteur d'accérération allant jusqu'a 50.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.02.021

Grégoire Loeper 1, 2 ; Olivier Pironneau 2

1 BNP-ParisBas
2 LJLL, Université Pierre-et-Marie-Curie (Paris 6), 175, rue du Chevaleret, 75013 Paris, France
@article{CRMATH_2009__347_9-10_559_0,
     author = {Gr\'egoire Loeper and Olivier Pironneau},
     title = {A mixed {PDE/Monte-Carlo} method for stochastic volatility models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {559--563},
     publisher = {Elsevier},
     volume = {347},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crma.2009.02.021},
     language = {en},
}
TY  - JOUR
AU  - Grégoire Loeper
AU  - Olivier Pironneau
TI  - A mixed PDE/Monte-Carlo method for stochastic volatility models
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 559
EP  - 563
VL  - 347
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2009.02.021
LA  - en
ID  - CRMATH_2009__347_9-10_559_0
ER  - 
%0 Journal Article
%A Grégoire Loeper
%A Olivier Pironneau
%T A mixed PDE/Monte-Carlo method for stochastic volatility models
%J Comptes Rendus. Mathématique
%D 2009
%P 559-563
%V 347
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2009.02.021
%G en
%F CRMATH_2009__347_9-10_559_0
Grégoire Loeper; Olivier Pironneau. A mixed PDE/Monte-Carlo method for stochastic volatility models. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 559-563. doi : 10.1016/j.crma.2009.02.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.021/

[1] Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, SIAM Series: Frontiers in Mathematics, vol. 30, Philadelphia, 2005

[2] F. Black; M. Scholes The pricing of options and corporate liabilities, J. Political Econ., Volume 81 (1973), pp. 637-659

[3] S. Heston A closed form solution for options with stochastic volatility with application to bond and currency options, Review with Financial Studies, Volume 6 (1993) no. 2, pp. 327-343

[4] P. Glasserman Monte-Carlo Methods in Financial Engineering, vol. 53, Stochastic Modeling and Applied Probability, Springer-Verlag, New York, 2004

[5] P. Wilmott; S. Howison; J. Dewynne The Mathematics of Financial Derivatives, A Student Introduction, Cambridge University Press, Cambridge, 1995

  • Bénédicte Alziary; Peter Takáč Monotone methods in counterparty risk models with nonlinear Black-Scholes-type equations, SeMA Journal, Volume 80 (2023) no. 3, pp. 353-379 | DOI:10.1007/s40324-022-00306-0 | Zbl:1527.35429
  • Jiacheng Cai; Hongtao Yang A finite volume-alternating direction implicit method for the valuation of American options under the Heston model, International Journal of Computer Mathematics, Volume 97 (2020) no. 3, pp. 700-724 | DOI:10.1080/00207160.2019.1585826 | Zbl:1480.91311
  • David Farahany; Kenneth R. Jackson; Sebastian Jaimungal Mixing LSMC and PDE methods to price Bermudan options, SIAM Journal on Financial Mathematics, Volume 11 (2020) no. 1, pp. 201-239 | DOI:10.1137/19m1249035 | Zbl:1443.91328
  • F. Soleymani; M. Barfeie Pricing options under stochastic volatility jump model: a stable adaptive scheme, Applied Numerical Mathematics, Volume 145 (2019), pp. 69-89 | DOI:10.1016/j.apnum.2019.05.027 | Zbl:1433.91180
  • Jan Pospíšil; Vladimír Švígler Isogeometric analysis in option pricing, International Journal of Computer Mathematics, Volume 96 (2019) no. 11, pp. 2177-2200 | DOI:10.1080/00207160.2018.1494826 | Zbl:1499.35603
  • Fazlollah Soleymani; Ali Akgül Asset pricing for an affine jump-diffusion model using an FD method of lines on nonuniform meshes, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 2, pp. 578-591 | DOI:10.1002/mma.5363 | Zbl:1419.91655
  • Song-Ping Zhu; Xin-Jiang He A hybrid computational approach for option pricing, International Journal of Financial Engineering, Volume 05 (2018) no. 03, p. 1850021 | DOI:10.1142/s2424786318500214
  • David Farahany; Sebastian Jaimungal; Kenneth R. Jackson Mixing LSMC and PDE Methods to Price Bermudan Options, SSRN Electronic Journal (2016) | DOI:10.2139/ssrn.2870962
  • Duy-Minh Dang; Kenneth R. Jackson; Mohammadreza Mohammadi Dimension and variance reduction for Monte Carlo methods for high-dimensional models in finance, Applied Mathematical Finance, Volume 22 (2015) no. 5-6, pp. 522-552 | DOI:10.1080/1350486x.2015.1110492 | Zbl:1396.91798
  • Duy-Minh Dang; Kenneth R. Jackson; Mohammadreza Mohammadi Dimension and Variance Reduction for Monte Carlo Methods for High-Dimensional Models in Finance, SSRN Electronic Journal (2015) | DOI:10.2139/ssrn.2553044
  • Tobias Lipp; Grégoire Loeper; Olivier Pironneau Mixing Monte-Carlo and Partial Differential Equations for Pricing Options, Partial Differential Equations: Theory, Control and Approximation (2014), p. 323 | DOI:10.1007/978-3-642-41401-5_13
  • Alexander Lipton; Andrey Gal; Andris Lasis Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results, Quantitative Finance, Volume 14 (2014) no. 11, pp. 1899-1922 | DOI:10.1080/14697688.2014.930965 | Zbl:1402.91895
  • William A McGhee Pricing Path Dependent Contracts in the Presence of Stochastic Volatility - Combining Numerical Integration, Finite Difference and Conditional Monte Carlo, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2510746
  • Tobias Lipp; Grégoire Loeper; Olivier Pironneau Mixing Monte-Carlo and partial differential equations for pricing options, Chinese Annals of Mathematics. Series B, Volume 34 (2013) no. 2, pp. 255-276 | DOI:10.1007/s11401-013-0763-2 | Zbl:1264.91139

Cité par 14 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: