[Pricing d'option financière avec volatilité stochastique par une métode mixte EDP / Monte-Carlo]
We propose a pricing method for derivatives modeled by a set of stochastic differential equations with the objective of reducing the computing time. The speed up observed in our numerical implementation can be as large as 50. The method is based on a joint use of Monte-Carlo simulations and PDE or analytical formulas. The method is tested in the framework of the Heston stochastic volatility model with and without barriers.
Nous proposons dans cette note une méthode pour accélérer les calculs d'options financières modélis'ees par un système d'équations différentielles stochastiques. La méthode consiste à intégrer un groupe d'équation par une méthode de Monte-Carlo et les autres par une méthode déterministe, EDP ou formules de Black–Scholes. La méthode est présentée avec une justification euristique seulement sur le modl‘ele de Heston puis testée numériquement et comparée à une solution Monte-Carlo classique du modlèle de Heston. Les simulations numériques montrent qu'on peut obtenir un facteur d'accérération allant jusqu'a 50.
Accepté le :
Publié le :
Grégoire Loeper 1, 2 ; Olivier Pironneau 2
@article{CRMATH_2009__347_9-10_559_0, author = {Gr\'egoire Loeper and Olivier Pironneau}, title = {A mixed {PDE/Monte-Carlo} method for stochastic volatility models}, journal = {Comptes Rendus. Math\'ematique}, pages = {559--563}, publisher = {Elsevier}, volume = {347}, number = {9-10}, year = {2009}, doi = {10.1016/j.crma.2009.02.021}, language = {en}, }
Grégoire Loeper; Olivier Pironneau. A mixed PDE/Monte-Carlo method for stochastic volatility models. Comptes Rendus. Mathématique, Volume 347 (2009) no. 9-10, pp. 559-563. doi : 10.1016/j.crma.2009.02.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.02.021/
[1] Y. Achdou, O. Pironneau, Computational Methods for Option Pricing, SIAM Series: Frontiers in Mathematics, vol. 30, Philadelphia, 2005
[2] The pricing of options and corporate liabilities, J. Political Econ., Volume 81 (1973), pp. 637-659
[3] A closed form solution for options with stochastic volatility with application to bond and currency options, Review with Financial Studies, Volume 6 (1993) no. 2, pp. 327-343
[4] Monte-Carlo Methods in Financial Engineering, vol. 53, Stochastic Modeling and Applied Probability, Springer-Verlag, New York, 2004
[5] The Mathematics of Financial Derivatives, A Student Introduction, Cambridge University Press, Cambridge, 1995
- Monotone methods in counterparty risk models with nonlinear Black-Scholes-type equations, S
MA Journal, Volume 80 (2023) no. 3, pp. 353-379 | DOI:10.1007/s40324-022-00306-0 | Zbl:1527.35429 - A finite volume-alternating direction implicit method for the valuation of American options under the Heston model, International Journal of Computer Mathematics, Volume 97 (2020) no. 3, pp. 700-724 | DOI:10.1080/00207160.2019.1585826 | Zbl:1480.91311
- Mixing LSMC and PDE methods to price Bermudan options, SIAM Journal on Financial Mathematics, Volume 11 (2020) no. 1, pp. 201-239 | DOI:10.1137/19m1249035 | Zbl:1443.91328
- Pricing options under stochastic volatility jump model: a stable adaptive scheme, Applied Numerical Mathematics, Volume 145 (2019), pp. 69-89 | DOI:10.1016/j.apnum.2019.05.027 | Zbl:1433.91180
- Isogeometric analysis in option pricing, International Journal of Computer Mathematics, Volume 96 (2019) no. 11, pp. 2177-2200 | DOI:10.1080/00207160.2018.1494826 | Zbl:1499.35603
- Asset pricing for an affine jump-diffusion model using an FD method of lines on nonuniform meshes, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 2, pp. 578-591 | DOI:10.1002/mma.5363 | Zbl:1419.91655
- A hybrid computational approach for option pricing, International Journal of Financial Engineering, Volume 05 (2018) no. 03, p. 1850021 | DOI:10.1142/s2424786318500214
- Mixing LSMC and PDE Methods to Price Bermudan Options, SSRN Electronic Journal (2016) | DOI:10.2139/ssrn.2870962
- Dimension and variance reduction for Monte Carlo methods for high-dimensional models in finance, Applied Mathematical Finance, Volume 22 (2015) no. 5-6, pp. 522-552 | DOI:10.1080/1350486x.2015.1110492 | Zbl:1396.91798
- Dimension and Variance Reduction for Monte Carlo Methods for High-Dimensional Models in Finance, SSRN Electronic Journal (2015) | DOI:10.2139/ssrn.2553044
- Mixing Monte-Carlo and Partial Differential Equations for Pricing Options, Partial Differential Equations: Theory, Control and Approximation (2014), p. 323 | DOI:10.1007/978-3-642-41401-5_13
- Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results, Quantitative Finance, Volume 14 (2014) no. 11, pp. 1899-1922 | DOI:10.1080/14697688.2014.930965 | Zbl:1402.91895
- Pricing Path Dependent Contracts in the Presence of Stochastic Volatility - Combining Numerical Integration, Finite Difference and Conditional Monte Carlo, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2510746
- Mixing Monte-Carlo and partial differential equations for pricing options, Chinese Annals of Mathematics. Series B, Volume 34 (2013) no. 2, pp. 255-276 | DOI:10.1007/s11401-013-0763-2 | Zbl:1264.91139
Cité par 14 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier