[Théorie pour les potentiels vecteurs et inégalités de Sobolev pour des champs de vecteurs]
Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, nous prouvons lʼexistence et lʼunicité des potentiels vecteurs en théorie , associés à des champs de vecteurs à divergence nulle et vérifiant plusieurs conditions aux limites. On présente également des résultats concernant les potentiels scalaires et les potentiels vecteurs faibles. De plus, plusieurs inégalités de Sobolev sont données.
In a three-dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of vector potentials in -theory, associated with a divergence-free function and satisfying some boundary conditions. We also present some results concerning scalar potentials and weak vector potentials. Furthermore, various Sobolev-type inequalities are given.
Accepté le :
Publié le :
Chérif Amrouche 1 ; Nour El Houda Seloula 1, 2
@article{CRMATH_2011__349_9-10_529_0, author = {Ch\'erif Amrouche and Nour El Houda Seloula}, title = {$ {L}^{p}$-theory for vector potentials and {Sobolev's} inequalities for vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.008}, language = {en}, }
TY - JOUR AU - Chérif Amrouche AU - Nour El Houda Seloula TI - $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields JO - Comptes Rendus. Mathématique PY - 2011 SP - 529 EP - 534 VL - 349 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2011.04.008 LA - en ID - CRMATH_2011__349_9-10_529_0 ER -
Chérif Amrouche; Nour El Houda Seloula. $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 529-534. doi : 10.1016/j.crma.2011.04.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.008/
[1] Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[2] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 119 (1994) no. 44, pp. 109-140
[3] C. Amrouche, N. Seloula, -theory for vector potentials and Sobolevʼs inequalities for vector fields. Application to the Stokes problemʼs with pressure boundary conditions, submitted for publication.
[4] A remark on the regularity of solutions of Maxwellʼs equations on Lipschitz domains, Math. Methods Appl. Sci. Theory, Volume 12 (1990), pp. 365-368
[5] Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986
[6] Estimating ∇u by div u, , Math. Methods Appl. Sci., Volume 15 (1992), pp. 123-143
Cité par Sources :
Commentaires - Politique