[Théorie
Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, nous prouvons lʼexistence et lʼunicité des potentiels vecteurs en théorie
In a three-dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of vector potentials in
Accepté le :
Publié le :
Chérif Amrouche 1 ; Nour El Houda Seloula 1, 2
@article{CRMATH_2011__349_9-10_529_0, author = {Ch\'erif Amrouche and Nour El Houda Seloula}, title = {$ {L}^{p}$-theory for vector potentials and {Sobolev's} inequalities for vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.008}, language = {en}, }
TY - JOUR AU - Chérif Amrouche AU - Nour El Houda Seloula TI - $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields JO - Comptes Rendus. Mathématique PY - 2011 SP - 529 EP - 534 VL - 349 IS - 9-10 PB - Elsevier DO - 10.1016/j.crma.2011.04.008 LA - en ID - CRMATH_2011__349_9-10_529_0 ER -
Chérif Amrouche; Nour El Houda Seloula. $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 529-534. doi : 10.1016/j.crma.2011.04.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.008/
[1] Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[2] Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 119 (1994) no. 44, pp. 109-140
[3] C. Amrouche, N. Seloula,
[4] A remark on the regularity of solutions of Maxwellʼs equations on Lipschitz domains, Math. Methods Appl. Sci. Theory, Volume 12 (1990), pp. 365-368
[5] Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986
[6] Estimating ∇u by div u,
- Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. 76 | DOI:10.1051/cocv/2021071
- On a version of the de Rham theorem and an application to the Maxwell–Stokes type problem, The Journal of Analysis, Volume 29 (2021) no. 3, p. 873 | DOI:10.1007/s41478-020-00284-4
- Applications of a version of the de Rham lemma to the existence theory of a weak solution to the Maxwell–Stokes type equation, Arabian Journal of Mathematics, Volume 9 (2020) no. 1, p. 9 | DOI:10.1007/s40065-018-0224-6
- Existence, regularity and uniqueness of weak solutions with bounded magnetic fields to the steady Hall-MHD system, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 2 | DOI:10.1007/s00526-020-01745-1
- On the de Rham Theorem and an Application to the Maxwell–Stokes Type Problem, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 55 (2020) no. 6, p. 356 | DOI:10.3103/s1068362320060047
- Existence and regularity of weak solutions for a thermoelectric model, Nonlinearity, Volume 32 (2019) no. 9, p. 3342 | DOI:10.1088/1361-6544/ab1453
- On the asymptotic behaviour of a variable exponent power law magnetostatic problem, Applicable Analysis, Volume 97 (2018) no. 12, p. 2097 | DOI:10.1080/00036811.2017.1359554
- Minimizing the Lp norm of the curl of vector fields in a multi-connected domain, International Journal of Mathematics, Volume 28 (2017) no. 01, p. 1750004 | DOI:10.1142/s0129167x17500045
- Analysis of eddy current formulations in two-dimensional domains with cracks, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 141 | DOI:10.1051/m2an/2014027
- Regularity of weak solutions for degenerate quasilinear elliptic equations involving operator curl, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, p. 872 | DOI:10.1016/j.jmaa.2015.02.001
- Regularity of weak solutions to nonlinear Maxwell systems, Journal of Mathematical Physics, Volume 56 (2015) no. 7 | DOI:10.1063/1.4927427
- Elliptic Regularity Theory Applied to Time Harmonic Anisotropic Maxwell's Equations with Less than Lipschitz Complex Coefficients, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 1, p. 998 | DOI:10.1137/130929539
- Helmholtz-Hodge Decomposition on [0,1] d by Divergence-Free and Curl-Free Wavelets, Curves and Surfaces, Volume 6920 (2012), p. 311 | DOI:10.1007/978-3-642-27413-8_20
- On a p-curl system arising in electromagnetism, Discrete Continuous Dynamical Systems - S, Volume 5 (2012) no. 3, p. 605 | DOI:10.3934/dcdss.2012.5.605
- A class of electromagnetic -curl systems: Blow-up and finite time extinction, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 9, p. 3916 | DOI:10.1016/j.na.2012.02.011
Cité par 15 documents. Sources : Crossref
Commentaires - Politique