Comptes Rendus
Partial Differential Equations
Lp-theory for vector potentials and Sobolevʼs inequalities for vector fields
[Théorie Lp pour les potentiels vecteurs et inégalités de Sobolev pour des champs de vecteurs]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 529-534.

Dans un ouvert borné tridimensionnel, éventuellement multiplement connexe, nous prouvons lʼexistence et lʼunicité des potentiels vecteurs en théorie Lp, associés à des champs de vecteurs à divergence nulle et vérifiant plusieurs conditions aux limites. On présente également des résultats concernant les potentiels scalaires et les potentiels vecteurs faibles. De plus, plusieurs inégalités de Sobolev sont données.

In a three-dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of vector potentials in Lp-theory, associated with a divergence-free function and satisfying some boundary conditions. We also present some results concerning scalar potentials and weak vector potentials. Furthermore, various Sobolev-type inequalities are given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.04.008

Chérif Amrouche 1 ; Nour El Houda Seloula 1, 2

1 Laboratoire de mathématiques appliquées, CNRS UMR 5142, université de Pau et des Pays de lʼAdour, IPRA, avenue de lʼuniversité, 64000 Pau, France
2 EPI Concha, LMA UMR CNRS 5142, INRIA Bordeaux-Sud-Ouest, 64000 Pau, France
@article{CRMATH_2011__349_9-10_529_0,
     author = {Ch\'erif Amrouche and Nour El Houda Seloula},
     title = {$ {L}^{p}$-theory for vector potentials and {Sobolev's} inequalities for vector fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {529--534},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.04.008},
     language = {en},
}
TY  - JOUR
AU  - Chérif Amrouche
AU  - Nour El Houda Seloula
TI  - $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 529
EP  - 534
VL  - 349
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2011.04.008
LA  - en
ID  - CRMATH_2011__349_9-10_529_0
ER  - 
%0 Journal Article
%A Chérif Amrouche
%A Nour El Houda Seloula
%T $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields
%J Comptes Rendus. Mathématique
%D 2011
%P 529-534
%V 349
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2011.04.008
%G en
%F CRMATH_2011__349_9-10_529_0
Chérif Amrouche; Nour El Houda Seloula. $ {L}^{p}$-theory for vector potentials and Sobolevʼs inequalities for vector fields. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 529-534. doi : 10.1016/j.crma.2011.04.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.008/

[1] C. Amrouche; C. Bernardi; M. Dauge; V. Girault Vector potentials in three-dimensional nonsmooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864

[2] C. Amrouche; V. Girault Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J., Volume 119 (1994) no. 44, pp. 109-140

[3] C. Amrouche, N. Seloula, Lp-theory for vector potentials and Sobolevʼs inequalities for vector fields. Application to the Stokes problemʼs with pressure boundary conditions, submitted for publication.

[4] M. Costabel A remark on the regularity of solutions of Maxwellʼs equations on Lipschitz domains, Math. Methods Appl. Sci. Theory, Volume 12 (1990), pp. 365-368

[5] V. Girault; P.A. Raviart Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986

[6] W. von Wahl Estimating ∇u by div u, curlu, Math. Methods Appl. Sci., Volume 15 (1992), pp. 123-143

  • Imene Aicha Djebour Local null controllability of a fluid–rigid body interaction problem with Navier slip boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, Volume 27 (2021), p. 76 | DOI:10.1051/cocv/2021071
  • Junichi Aramaki On a version of the de Rham theorem and an application to the Maxwell–Stokes type problem, The Journal of Analysis, Volume 29 (2021) no. 3, p. 873 | DOI:10.1007/s41478-020-00284-4
  • Junichi Aramaki Applications of a version of the de Rham lemma to the existence theory of a weak solution to the Maxwell–Stokes type equation, Arabian Journal of Mathematics, Volume 9 (2020) no. 1, p. 9 | DOI:10.1007/s40065-018-0224-6
  • Yong Zeng; Zhibing Zhang Existence, regularity and uniqueness of weak solutions with bounded magnetic fields to the steady Hall-MHD system, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 2 | DOI:10.1007/s00526-020-01745-1
  • J. Aramaki On the de Rham Theorem and an Application to the Maxwell–Stokes Type Problem, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), Volume 55 (2020) no. 6, p. 356 | DOI:10.3103/s1068362320060047
  • Xing-Bin Pan; Zhibing Zhang Existence and regularity of weak solutions for a thermoelectric model, Nonlinearity, Volume 32 (2019) no. 9, p. 3342 | DOI:10.1088/1361-6544/ab1453
  • Hélia Serrano On the asymptotic behaviour of a variable exponent power law magnetostatic problem, Applicable Analysis, Volume 97 (2018) no. 12, p. 2097 | DOI:10.1080/00036811.2017.1359554
  • Junichi Aramaki Minimizing the Lp norm of the curl of vector fields in a multi-connected domain, International Journal of Mathematics, Volume 28 (2017) no. 01, p. 1750004 | DOI:10.1142/s0129167x17500045
  • Stephanie Lohrengel; Serge Nicaise Analysis of eddy current formulations in two-dimensional domains with cracks, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 141 | DOI:10.1051/m2an/2014027
  • Junichi Aramaki Regularity of weak solutions for degenerate quasilinear elliptic equations involving operator curl, Journal of Mathematical Analysis and Applications, Volume 426 (2015) no. 2, p. 872 | DOI:10.1016/j.jmaa.2015.02.001
  • Xing-Bin Pan Regularity of weak solutions to nonlinear Maxwell systems, Journal of Mathematical Physics, Volume 56 (2015) no. 7 | DOI:10.1063/1.4927427
  • Giovanni S. Alberti; Yves Capdeboscq Elliptic Regularity Theory Applied to Time Harmonic Anisotropic Maxwell's Equations with Less than Lipschitz Complex Coefficients, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 1, p. 998 | DOI:10.1137/130929539
  • Souleymane Kadri Harouna; Valérie Perrier Helmholtz-Hodge Decomposition on [0,1] d by Divergence-Free and Curl-Free Wavelets, Curves and Surfaces, Volume 6920 (2012), p. 311 | DOI:10.1007/978-3-642-27413-8_20
  • Fernando Miranda; José-Francisco Rodrigues; Lisa Santos On a p-curl system arising in electromagnetism, Discrete Continuous Dynamical Systems - S, Volume 5 (2012) no. 3, p. 605 | DOI:10.3934/dcdss.2012.5.605
  • Stanislav Antontsev; Fernando Miranda; Lisa Santos A class of electromagnetic -curl systems: Blow-up and finite time extinction, Nonlinear Analysis: Theory, Methods Applications, Volume 75 (2012) no. 9, p. 3916 | DOI:10.1016/j.na.2012.02.011

Cité par 15 documents. Sources : Crossref

Commentaires - Politique