[Étude dʼun système de réaction–diffusion avec pertes]
This Note deals with the existence and qualitative properties of traveling wave solutions of a nonlinear reaction–diffusion system with losses inside the domain. In particular, we show the existence of a continuum of admissible speeds of traveling waves. Lastly, by considering losses concentrated near the boundary of the domain, these results are compared with those already known in the case of losses on the boundary.
Cette Note a pour objet lʼexistence et les propriétés des solutions de type front progressif pour un système de réaction–diffusion non linéaire avec pertes à lʼintérieur du domaine. Nous montrons en particulier lʼexistence dʼun continuum de vitesses admissibles pour les fronts. Enfin, en considérant des pertes localisées près du bord, ces résultats sont comparés avec ceux déjà connus pour des pertes à la frontière du domaine.
Accepté le :
Publié le :
Thomas Giletti 1
@article{CRMATH_2011__349_9-10_535_0, author = {Thomas Giletti}, title = {Traveling waves for a reaction{\textendash}diffusion{\textendash}advection system with interior or boundary losses}, journal = {Comptes Rendus. Math\'ematique}, pages = {535--539}, publisher = {Elsevier}, volume = {349}, number = {9-10}, year = {2011}, doi = {10.1016/j.crma.2011.04.002}, language = {en}, }
Thomas Giletti. Traveling waves for a reaction–diffusion–advection system with interior or boundary losses. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 535-539. doi : 10.1016/j.crma.2011.04.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.04.002/
[1] H. Berestycki, F. Hamel, Reaction–Diffusion Equations and Propagation Phenomena, Springer-Verlag, in press.
[2] Quenching and propagation in KPP reaction–diffusion equations with a heat loss, Arch. Ration. Mech. Anal., Volume 178 (2005), pp. 57-80
[3] Traveling wave in cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 9 (1992), pp. 497-572
[4] KPP reaction–diffusion equations with a non-linear loss inside a cylinder, Nonlinearity, Volume 23 (2010), p. 2307
[5] T. Giletti, KPP reaction–diffusion system with loss inside a cylinder: convergence toward the problem with Robin boundary conditions, preprint.
[6] Non-adiabatic KPP fronts with an arbitrary Lewis number, Nonlinearity, Volume 18 (2005), pp. 2881-2902
[7] Mathematical Biology, Springer, 2003
[8] Analysis and modelling of front propagation in heterogeneous media, SIAM Rev., Volume 42 (2000), pp. 161-230
- Numerical Treatment of Multidimensional Stochastic, Competitive and Evolutionary Models, Disease Prevention and Health Promotion in Developing Countries (2020), p. 183 | DOI:10.1007/978-3-030-34702-4_13
- , 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO) (2019), p. 1 | DOI:10.1109/icmsao.2019.8880436
- Barycentric interpolation of interface solution for solving stochastic partial differential equations on non-overlapping subdomains with additive multi-noises, International Journal of Computer Mathematics, Volume 95 (2018) no. 4, pp. 645-685 | DOI:10.1080/00207160.2017.1297429 | Zbl:1390.35165
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique