[Ensembles de Koebe pour certaines classes de fonctions circulairement symétriques]
A function f analytic in
The main concern of the paper is to determine two Koebe sets: for the class
Une fonction f analytique dans
L'objet de cette Note est de déterminer les ensembles de Koebe pour la classe
Accepté le :
Publié le :
Paweł Zaprawa 1
@article{CRMATH_2016__354_3_245_0, author = {Pawe{\l} Zaprawa}, title = {Koebe sets for certain classes of circularly symmetric functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {245--252}, publisher = {Elsevier}, volume = {354}, number = {3}, year = {2016}, doi = {10.1016/j.crma.2015.12.016}, language = {en}, }
Paweł Zaprawa. Koebe sets for certain classes of circularly symmetric functions. Comptes Rendus. Mathématique, Volume 354 (2016) no. 3, pp. 245-252. doi : 10.1016/j.crma.2015.12.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.12.016/
[1] On circularly symmetric functions, Appl. Math. Lett., Volume 23 (2010) no. 12, pp. 1483-1488
[2] On the coefficients of Bazilevič functions and circularly symmetric functions, Appl. Math. Lett., Volume 24 (2011) no. 12, pp. 991-995
[3] On circularly symmetric functions, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 620-624
[4] Koebe domains for certain classes of analytic functions, J. Anal. Math., Volume 18 (1967), pp. 185-195
[5] On circularly symmetric functions, J. Aust. Math. Soc., Volume 11 (1970), pp. 251-256
[6] On three classes of univalent functions with real coefficients, J. Lond. Math. Soc., Volume 39 (1964), pp. 43-50
[7] Extreme points of convex sets, IV, bounded typically real functions, Bull. Acad. Pol. Sci., Sér. Sci. Math., Volume 30 (1982), pp. 49-57
Cité par Sources :
Commentaires - Politique