Let
Révisé le :
Accepté le :
Publié le :
Mots-clés : birationality, Calabi–Yau threefolds, Fano manifolds, freeness
Jie Liu 1

@article{CRMATH_2020__358_4_415_0, author = {Jie Liu}, title = {Note on quasi-polarized canonical {Calabi{\textendash}Yau} threefolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--420}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.55}, language = {en}, }
Jie Liu. Note on quasi-polarized canonical Calabi–Yau threefolds. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 415-420. doi : 10.5802/crmath.55. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.55/
[1] A Calabi–Yau threefold with non-abelian fundamental group, New trends in algebraic geometry (Warwick, 1996) (London Mathematical Society Lecture Note Series), Volume 264, Cambridge University Press, 1999, pp. 13-17 | DOI | MR | Zbl
[2] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[3] Fundamental divisors on Fano varieties of index
[4] Classification of polarized manifolds of sectional genus two, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, 1988, pp. 73-98 | DOI | MR | Zbl
[5] Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, 155, Cambridge University Press, 1990, xiv+205 pages | DOI | MR | Zbl
[6] On birational geometry of minimal threefolds with numerically trivial canonical divisors, Math. Ann., Volume 365 (2016) no. 1-2, pp. 49-76 | DOI | MR | Zbl
[7] Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces., Ann. Math., Volume 127 (1988) no. 1, pp. 93-163 | DOI | MR | Zbl
[8] On effective non-vanishing and base-point-freeness, Asian J. Math., Volume 4 (2000) no. 1, pp. 173-181 (Kodaira’s issue) | DOI | MR | Zbl
[9] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages | DOI | MR | Zbl
[10] Some remarks and problems concerning the geography of Fano
[11] Second Chern class of Fano manifolds and anti-canonical geometry, Math. Ann., Volume 375 (2019) no. 1-2, pp. 655-669 | DOI | MR | Zbl
[12] Pluricanonical maps of stable log surfaces., Adv. Math., Volume 258 (2014), pp. 69-126 | DOI | MR | Zbl
[13] On polarized Calabi-Yau
[14] On polarized canonical Calabi–Yau threefolds, Math. Ann., Volume 301 (1995) no. 2, pp. 237-248 | DOI | MR | Zbl
[15] On generic nefness of tangent sheaves (2017) (https://arxiv.org/abs/1703.03175v1)
[16] Vector bundles of rank
- FANO FOURFOLDS WITH LARGE ANTICANONICAL BASE LOCUS, Journal of the Institute of Mathematics of Jussieu (2025), p. 1 | DOI:10.1017/s1474748024000604
- Singularities of pluri-fundamental divisors on Gorenstein Fano varieties of coindex 4, Birational geometry, Kähler-Einstein metrics and degenerations. Proceedings of the conferences, Moscow, Russia, April 8–13, 2019, Shanghai, China, June 10–14, 2019, Pohang, South Korea, November 18–22, 2019, Cham: Springer, 2023, pp. 681-692 | DOI:10.1007/978-3-031-17859-7_34 | Zbl:1547.14055
- On Weierstrass nodes, Annales Henri Lebesgue, Volume 4 (2021), pp. 571-589 | DOI:10.5802/ahl.81 | Zbl:1486.14040
Cité par 3 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier