[Cas d’égalité de l’inégalité de Miyaoka–Yau et uniformisation des paires klt à courbure négative]
Soit une paire klt compacte kählérienne pour laquelle est ample ou numériquement trivial, et à coefficients standard. Nous démontrons que, si l’inégalité de Miyaoka–Yau orbifold pour est une égalité, alors le revêtement universel orbifold de la paire est soit la boule (cas ample), soit l’espace affine (cas numériquement trivial).
Let be a compact Kähler klt pair, where is ample or numerically trivial, and has standard coefficients. We show that if equality holds in the orbifold Miyaoka–Yau inequality for , then its orbifold universal cover is either the unit ball (ample case) or the affine space (numerically trivial case).
Accepté le :
Publié le :
Keywords: Miyaoka–Yau inequality, orbifold uniformization, klt pairs
Mot clés : inégalité de Miyaoka–Yau, uniformisation orbifold, paires klt
Benoît Claudon 1 ; Patrick Graf 2 ; Henri Guenancia 3
@article{CRMATH_2024__362_S1_55_0, author = {Beno{\^\i}t Claudon and Patrick Graf and Henri Guenancia}, title = {Equality in the {Miyaoka{\textendash}Yau} inequality and uniformization of non-positively curved klt pairs}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--81}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.599}, language = {en}, }
TY - JOUR AU - Benoît Claudon AU - Patrick Graf AU - Henri Guenancia TI - Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs JO - Comptes Rendus. Mathématique PY - 2024 SP - 55 EP - 81 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.599 LA - en ID - CRMATH_2024__362_S1_55_0 ER -
%0 Journal Article %A Benoît Claudon %A Patrick Graf %A Henri Guenancia %T Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs %J Comptes Rendus. Mathématique %D 2024 %P 55-81 %V 362 %N S1 %I Académie des sciences, Paris %R 10.5802/crmath.599 %G en %F CRMATH_2024__362_S1_55_0
Benoît Claudon; Patrick Graf; Henri Guenancia. Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 55-81. doi : 10.5802/crmath.599. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/
[1] An embedding theorem for real analytic spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (1979) no. 3, pp. 415-426 | Numdam | MR | Zbl
[2] An elementary account of Selberg’s lemma, Enseign. Math., Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl
[3] Algebraic approximation of structures over complete local rings, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 23-58 | DOI | Numdam | MR | Zbl
[4] Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978) no. 1, pp. 63-95 | MR | Zbl
[5] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[6] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008, xii+613 pages | MR
[7] Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties, Invent. Math., Volume 228 (2022) no. 3, pp. 1255-1308 | DOI | Zbl
[8] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[9] The global moduli theory of symplectic varieties, J. Reine Angew. Math., Volume 790 (2022), pp. 223-265 | DOI | MR | Zbl
[10] Chern classes and Hirzebruch–Riemann–Roch theorem for coherent sheaves on complex-projective orbifolds with isolated singularities, Math. Z., Volume 222 (1996) no. 1, pp. 7-57 | DOI | MR | Zbl
[11] Curvature in Hermitian metric, Bull. Am. Math. Soc., Volume 53 (1947), pp. 179-195 | DOI | MR | Zbl
[12] The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math., Volume 226 (2021), pp. 845-896 | DOI | MR | Zbl
[13] Numerical characterization of complex torus quotients, Comment. Math. Helv. (2022) no. 4, pp. 769-799 | DOI | MR | Zbl
[14] Kähler spaces with zero first Chern class: Bochner principle, Albanese map and fundamental groups, J. Reine Angew. Math., Volume 786 (2022), pp. 245-275 | DOI | MR | Zbl
[15] Variation of singular Kähler-Einstein metrics: Kodaira dimension zero (with an appendix by Valentino Tosatti), J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 633-679 | DOI | Zbl
[16] Generic positivity and applications to hyperbolicity of moduli spaces, Hyperbolicity properties of algebraic varieties (Panoramas et Synthèses), Volume 56, Société Mathématique de France, 2021, pp. 169-208 | MR
[17] -reduction for smooth orbifolds, Manuscr. Math., Volume 127 (2008) no. 4, pp. 521-532 | DOI | MR | Zbl
[18] Kobayashi–Lübke inequalities for Chern classes of Hermite–Einstein vector bundles and Guggenheimer–Yau–Bogomolov–Miyaoka inequalities for Chern classes of Kähler–Einstein manifolds (2007) (available at https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/chern.pdf)
[19] Seminormal complex spaces, Several complex variables VII (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl
[20] The Zariski-Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR | Zbl
[21] Instantons and framed sheaves on Kähler Deligne–Mumford stacks, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 3, pp. 599-628 | DOI | Numdam | Zbl
[22] Minimal model program for projective morphisms between complex analytic spaces (2022) | arXiv
[23] An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | DOI | MR | Zbl
[24] Finite quotients of three-dimensional complex tori, Ann. Inst. Fourier, Volume 70 (2020) no. 2, pp. 881-914 | DOI | Numdam | MR | Zbl
[25] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl
[26] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | MR | Zbl
[27] The Miyaoka-Yau inequality and uniformisation of canonical models, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 6, pp. 1487-1535 | DOI | MR | Zbl
[28] Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1061-1094 | DOI | MR | Zbl
[29] Complex hyperbolic geometry, Oxford Mathematical Monographs, Clarendon Press, 1999, xx+316 pages (Oxford Science Publications) | DOI | MR
[30] Orbifold stability and Miyaoka–Yau inequality for minimal pairs, Geom. Topol., Volume 26 (2022), pp. 1435-1482 | DOI | MR | Zbl
[31] On algebraic varieties whose universal covering manifolds are complex affine -spaces. I, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya Book Store, 1973, pp. 147-167 | Zbl
[32] Families over special base manifolds and a conjecture of Campana, Math. Z., Volume 269 (2011) no. 3-4, pp. 847-878 | DOI | MR | Zbl
[33] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR
[34] Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers, 1969 | Zbl
[35] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI
[36] A Characterization of Finite Quotients of Abelian Varieties, Int. Math. Res. Not. (2018), pp. 292-319 | Zbl
[37] Orbifold regularity of weak Kähler–Einstein metrics, Advances in complex geometry (Contemporary Mathematics), Volume 735, American Mathematical Society, 2019, pp. 169-178 | Zbl
[38] Notes on topological stability, Bull. Am. Math. Soc., Volume 49 (2012) no. 4, pp. 475-506 | DOI | MR | Zbl
[39] Generalisation of the Bogomolov–Miyaoka–Yau inequality to singular surfaces, Proc. Lond. Math. Soc., Volume 78 (1999) no. 2, pp. 241-282 | DOI | MR | Zbl
[40] Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 271-328 | DOI | MR | Zbl
[41] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992) no. 1, pp. 105-203
[42] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I., Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
Cité par Sources :
Commentaires - Politique