[Cas d’égalité de l’inégalité de Miyaoka–Yau et uniformisation des paires klt à courbure négative]
Soit
Let
Accepté le :
Publié le :
Keywords: Miyaoka–Yau inequality, orbifold uniformization, klt pairs
Mots-clés : inégalité de Miyaoka–Yau, uniformisation orbifold, paires klt
Benoît Claudon 1 ; Patrick Graf 2 ; Henri Guenancia 3

@article{CRMATH_2024__362_S1_55_0, author = {Beno{\^\i}t Claudon and Patrick Graf and Henri Guenancia}, title = {Equality in the {Miyaoka{\textendash}Yau} inequality and uniformization of non-positively curved klt pairs}, journal = {Comptes Rendus. Math\'ematique}, pages = {55--81}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, number = {S1}, year = {2024}, doi = {10.5802/crmath.599}, language = {en}, }
TY - JOUR AU - Benoît Claudon AU - Patrick Graf AU - Henri Guenancia TI - Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs JO - Comptes Rendus. Mathématique PY - 2024 SP - 55 EP - 81 VL - 362 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmath.599 LA - en ID - CRMATH_2024__362_S1_55_0 ER -
%0 Journal Article %A Benoît Claudon %A Patrick Graf %A Henri Guenancia %T Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs %J Comptes Rendus. Mathématique %D 2024 %P 55-81 %V 362 %N S1 %I Académie des sciences, Paris %R 10.5802/crmath.599 %G en %F CRMATH_2024__362_S1_55_0
Benoît Claudon; Patrick Graf; Henri Guenancia. Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs. Comptes Rendus. Mathématique, Complex algebraic geometry, in memory of Jean-Pierre Demailly, Volume 362 (2024) no. S1, pp. 55-81. doi : 10.5802/crmath.599. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.599/
[1] An embedding theorem for real analytic spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 6 (1979) no. 3, pp. 415-426 | Numdam | MR | Zbl
[2] An elementary account of Selberg’s lemma, Enseign. Math., Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl
[3] Algebraic approximation of structures over complete local rings, Publ. Math., Inst. Hautes Étud. Sci. (1969) no. 36, pp. 23-58 | DOI | Numdam | MR | Zbl
[4] Équations du type Monge–Ampère sur les variétés kählériennes compactes, Bull. Sci. Math., Volume 102 (1978) no. 1, pp. 63-95 | MR | Zbl
[5] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[6] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008, xii+613 pages | MR
[7] Algebraic approximation and the decomposition theorem for Kähler Calabi–Yau varieties, Invent. Math., Volume 228 (2022) no. 3, pp. 1255-1308 | DOI | Zbl
[8] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR
[9] The global moduli theory of symplectic varieties, J. Reine Angew. Math., Volume 790 (2022), pp. 223-265 | DOI | MR | Zbl
[10] Chern classes and Hirzebruch–Riemann–Roch theorem for coherent sheaves on complex-projective orbifolds with isolated singularities, Math. Z., Volume 222 (1996) no. 1, pp. 7-57 | DOI | MR | Zbl
[11] Curvature in Hermitian metric, Bull. Am. Math. Soc., Volume 53 (1947), pp. 179-195 | DOI | MR | Zbl
[12] The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math., Volume 226 (2021), pp. 845-896 | DOI | MR | Zbl
[13] Numerical characterization of complex torus quotients, Comment. Math. Helv. (2022) no. 4, pp. 769-799 | DOI | MR | Zbl
[14] Kähler spaces with zero first Chern class: Bochner principle, Albanese map and fundamental groups, J. Reine Angew. Math., Volume 786 (2022), pp. 245-275 | DOI | MR | Zbl
[15] Variation of singular Kähler-Einstein metrics: Kodaira dimension zero (with an appendix by Valentino Tosatti), J. Eur. Math. Soc., Volume 25 (2023) no. 2, pp. 633-679 | DOI | Zbl
[16] Generic positivity and applications to hyperbolicity of moduli spaces, Hyperbolicity properties of algebraic varieties (Panoramas et Synthèses), Volume 56, Société Mathématique de France, 2021, pp. 169-208 | MR
[17]
[18] Kobayashi–Lübke inequalities for Chern classes of Hermite–Einstein vector bundles and Guggenheimer–Yau–Bogomolov–Miyaoka inequalities for Chern classes of Kähler–Einstein manifolds (2007) (available at https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/chern.pdf)
[19] Seminormal complex spaces, Several complex variables VII (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl
[20] The Zariski-Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR | Zbl
[21] Instantons and framed sheaves on Kähler Deligne–Mumford stacks, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 3, pp. 599-628 | DOI | Numdam | Zbl
[22] Minimal model program for projective morphisms between complex analytic spaces (2022) | arXiv
[23] An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | DOI | MR | Zbl
[24] Finite quotients of three-dimensional complex tori, Ann. Inst. Fourier, Volume 70 (2020) no. 2, pp. 881-914 | DOI | Numdam | MR | Zbl
[25] Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl
[26] Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2016) no. 10, pp. 1965-2004 | DOI | MR | Zbl
[27] The Miyaoka-Yau inequality and uniformisation of canonical models, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 6, pp. 1487-1535 | DOI | MR | Zbl
[28] Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1061-1094 | DOI | MR | Zbl
[29] Complex hyperbolic geometry, Oxford Mathematical Monographs, Clarendon Press, 1999, xx+316 pages (Oxford Science Publications) | DOI | MR
[30] Orbifold stability and Miyaoka–Yau inequality for minimal pairs, Geom. Topol., Volume 26 (2022), pp. 1435-1482 | DOI | MR | Zbl
[31] On algebraic varieties whose universal covering manifolds are complex affine
[32] Families over special base manifolds and a conjecture of Campana, Math. Z., Volume 269 (2011) no. 3-4, pp. 847-878 | DOI | MR | Zbl
[33] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (with the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR
[34] Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers, 1969 | Zbl
[35] Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI
[36] A Characterization of Finite Quotients of Abelian Varieties, Int. Math. Res. Not. (2018), pp. 292-319 | Zbl
[37] Orbifold regularity of weak Kähler–Einstein metrics, Advances in complex geometry (Contemporary Mathematics), Volume 735, American Mathematical Society, 2019, pp. 169-178 | Zbl
[38] Notes on topological stability, Bull. Am. Math. Soc., Volume 49 (2012) no. 4, pp. 475-506 | DOI | MR | Zbl
[39] Generalisation of the Bogomolov–Miyaoka–Yau inequality to singular surfaces, Proc. Lond. Math. Soc., Volume 78 (1999) no. 2, pp. 241-282 | DOI | MR | Zbl
[40] Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 271-328 | DOI | MR | Zbl
[41] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 56 (1992) no. 1, pp. 105-203
[42] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I., Commun. Pure Appl. Math., Volume 31 (1978), pp. 339-411 | Zbl
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier