Comptes Rendus
Article de recherche - Géométrie algébrique
Miyaoka–Yau inequalities and the topological characterization of certain klt varieties
[Inégalités de Miyaoka–Yau et caractérisation topologique de certaines variétés klt]
Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 141-157.

Les quotients de boules, les variétés hyperelliptiques et les espaces projectifs sont caractérisés par leurs classes de Chern, comme les variétés pour lesquelles l’inégalité de Miyaoka–Yau devient une égalité. Les quotients de boules, les variétés abéliennes et les espaces projectifs sont aussi caractérisés topologiquement  : si une variété projective complexe X est homéomorphe à une variété de ce type, alors X est elle-même de ce type. Dans cet article, des résultats similaires sont établis pour les variétés projectives avec des singularités klt qui sont homéomorphes à des quotients de boules singulières, à des quotients de variétés abéliennes, ou à des espaces projectifs.

Ball quotients, hyperelliptic varieties, and projective spaces are characterized by their Chern classes, as the varieties where the Miyaoka–Yau inequality becomes an equality. Ball quotients, Abelian varieties, and projective spaces are also characterized topologically: if a complex, projective manifold X is homeomorphic to a variety of this type, then X is itself of this type. In this paper, similar results are established for projective varieties with klt singularities that are homeomorphic to singular ball quotients, quotients of Abelian varieties, or projective spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.580
Classification : 32Q30, 32Q26, 14E20, 14E30
Keywords: Miyaoka–Yau inequality, klt singularities, uniformisation, homeomorphisms
Mot clés : Inégalité de Miyaoka–Yau, singularités klt, uniformisation, homéomorphismes

Daniel Greb 1 ; Stefan Kebekus 2 ; Thomas Peternell 3

1 Essener Seminar für Algebraische Geometrie und Arithmetik, Fakultät für Mathematik, Universität Duisburg–Essen, 45117 Essen, Germany
2 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Ernst-Zermelo-Straße 1, 79104 Freiburg im Breisgau, Germany
3 Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_S1_141_0,
     author = {Daniel Greb and Stefan Kebekus and Thomas Peternell},
     title = {Miyaoka{\textendash}Yau inequalities and the topological characterization of certain klt varieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {141--157},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     number = {S1},
     year = {2024},
     doi = {10.5802/crmath.580},
     language = {en},
}
TY  - JOUR
AU  - Daniel Greb
AU  - Stefan Kebekus
AU  - Thomas Peternell
TI  - Miyaoka–Yau inequalities and the topological characterization of certain klt varieties
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 141
EP  - 157
VL  - 362
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.580
LA  - en
ID  - CRMATH_2024__362_S1_141_0
ER  - 
%0 Journal Article
%A Daniel Greb
%A Stefan Kebekus
%A Thomas Peternell
%T Miyaoka–Yau inequalities and the topological characterization of certain klt varieties
%J Comptes Rendus. Mathématique
%D 2024
%P 141-157
%V 362
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmath.580
%G en
%F CRMATH_2024__362_S1_141_0
Daniel Greb; Stefan Kebekus; Thomas Peternell. Miyaoka–Yau inequalities and the topological characterization of certain klt varieties. Comptes Rendus. Mathématique, Volume 362 (2024) no. S1, pp. 141-157. doi : 10.5802/crmath.580. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.580/

[1] Jaume Amorós; Marc Burger; Kevin Corlette; Dieter Kotschick; Domingo Toledo Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, 44, American Mathematical Society, 1996 | DOI | Zbl

[2] Oliver Baues; Vicente Cortés Aspherical Kähler manifolds with solvable fundamental group, Geom. Dedicata, Volume 122 (2006), pp. 215-229 | DOI | Zbl

[3] Armand Borel; John C. Moore Homology theory for locally compact spaces, Mich. Math. J., Volume 7 (1960), pp. 137-159 | DOI | MR | Zbl

[4] Robert Bryant Complex structures on Hermitian symmetric space, 2020 (MathOverflow, https://mathoverflow.net/q/363432)

[5] Constantin Bănică; Octavian Stănăşilă Algebraic methods in the global theory of complex spaces, Editura Academiei; John Wiley & Sons, 1976 (Translated from the Romanian)

[6] Fabrizio Catanese Deformation types of real and complex manifolds, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) (Nankai Tracts in Mathematics), Volume 5, World Scientific, 2002, pp. 195-238 | DOI | MR | Zbl

[7] Fabrizio Catanese Topological methods in moduli theory, Bull. Math. Sci., Volume 5 (2015) no. 3, pp. 287-449 | DOI | MR

[8] Benoît Claudon; Patrick Graf; Henri Guenancia Equality in the Miyaoka–Yau inequality and uniformization of non-positively curved klt pairs (2023) (https://arxiv.org/abs/2305.04074)

[9] Gerd Dethloff; Hans Grauert Seminormal complex spaces, Several Complex Variables VII (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 183-220 | DOI | MR | Zbl

[10] Patrick B. Eberlein Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, University of Chicago Press, 1996 | MR

[11] Osamu Fujino Minimal model program for projective morphisms between complex analytic spaces (2022) (https://arxiv.org/abs/2201.11315)

[12] Osamu Fujino Vanishing theorems for projective morphisms between complex analytic spaces (2023) (https://arxiv.org/abs/2205.14801)

[13] Takao Fujita On polarized manifolds whose adjoint bundles are not semipositive, Algebraic Geometry (Sendai, 1985) (Advanced Studies in Pure Mathematics), Volume 10, North-Holland, 1985, pp. 167-178 | DOI | Zbl

[14] Takao Fujita On singular del Pezzo varieties, Algebraic Geometry (L’Aquila, 1988) (Lecture Notes in Mathematics), Volume 1417, Springer, 1988, pp. 117-128 | DOI | Zbl

[15] William Fulton Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1998 | DOI

[16] Daniel Greb; Stefan Kebekus; Sándor J. Kovács; Thomas Peternell Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 114 (2011) no. 1, pp. 87-169 (An extended version with additional graphics is available at http://arxiv.org/abs/1003.2913) | DOI | Numdam | MR | Zbl

[17] Daniel Greb; Stefan Kebekus; Thomas Peternell Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., Volume 165 (2004) no. 10, pp. 1965-2004 | DOI | Zbl

[18] Daniel Greb; Stefan Kebekus; Thomas Peternell Projectively flat klt varieties, J. Éc. Polytech., Math., Volume 8 (2021), pp. 1005-1036 | DOI | Numdam | MR | Zbl

[19] Daniel Greb; Stefan Kebekus; Thomas Peternell Projective flatness over klt spaces and uniformisation of varieties with nef anti-canonical divisor, J. Algebr. Geom., Volume 31 (2022), pp. 467-496 | DOI | MR | Zbl

[20] Daniel Greb; Stefan Kebekus; Thomas Peternell; Behrouz Taji The Miyaoka–Yau inequality and uniformisation of canonical models, Ann. Sci. Éc. Norm. Supér., Volume 52 (2019) no. 6, pp. 1487-1535 | DOI | MR | Zbl

[21] Daniel Greb; Stefan Kebekus; Thomas Peternell; Behrouz Taji Harmonic metrics on Higgs sheaves and uniformization of varieties of general type, Math. Ann., Volume 378 (2020) no. 3-4, pp. 1061-1094 | DOI | MR | Zbl

[22] Daniel Greb; Stefan Kebekus; Behrouz Taji Uniformisation of higher-dimensional varieties, Algebraic Geometry (Salt Lake City 2015) (Proceedings of Symposia in Pure Mathematics), Volume 1, American Mathematical Society, 2015, pp. 277-308 | DOI | Zbl

[23] Mark Goresky; Robert D. MacPherson Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 14, Springer, 1988 | DOI

[24] André Gramain L’invariance topologique des classes de Pontrjagin rationnelles (d’après S. P. Novikov et L. C. Siebenmann), Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1995, pp. 391-406 (Exp. No. 304) | MR

[25] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[26] Sigurdur Helgason Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 1978 | DOI

[27] Friedrich Hirzebruch; Kunihiko Kodaira On the complex projective spaces, J. Math. Pures Appl., Volume 36 (1957), pp. 201-216 | MR | Zbl

[28] János Kollár; Shigefumi Mori Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI

[29] János Kollár Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, 1995 | DOI

[30] Stefan Kebekus; Luis Solá Conde; Matei Toma Rationally connected foliations after Bogomolov and McQuillan, J. Algebr. Geom., Volume 16 (2007) no. 1, pp. 65-81 | DOI | MR | Zbl

[31] Haidong Liu; Jie Liu Kawamata–Miyaoka type inequality for canonical -Fano varieties (2023) (https://arxiv.org/abs/2308.10440)

[32] Steven Lu; Behrouz Taji A characterization of finite quotients of abelian varieties, Int. Math. Res. Not., Volume 2018 (2018) no. 1, pp. 292-319 | DOI | MR | Zbl

[33] George D. Mostow Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, University of Tokyo Press, 1973 | DOI

[34] Sergeĭ P. Novikov Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR, Volume 163 (1965), pp. 298-300 | MR

[35] Wenhao Ou On generic nefness of tangent sheaves, Math. Z., Volume 304 (2023) no. 4, 58, 23 pages | DOI | MR | Zbl

[36] Miles Reid Projective morphisms according to Kawamata (1983) (Preprint, University of Warwick, available at http://www.maths.warwick.ac.uk/~miles/3folds)

[37] Andrew Ranicki; Michael Weiss On the construction and topological invariance of the Pontryagin classes, Geom. Dedicata, Volume 148 (2010), pp. 309-343 | DOI | MR | Zbl

[38] Günter Scheja Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Volume 144 (1961), pp. 345-360 | DOI | Zbl

[39] Yum-Tong Siu The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds, Ann. Math., Volume 112 (1980) no. 1, pp. 73-111 | DOI | Zbl

[40] Yum-Tong Siu Strong rigidity of compact quotients of exceptional bounded symmetric domains, Duke Math. J., Volume 48 (1981) no. 4, pp. 857-871 | DOI | MR | Zbl

[41] Karl Stein Analytische Zerlegungen komplexer Räume, Math. Ann., Volume 132 (1956), pp. 63-93 | DOI | MR | Zbl

[42] René Thom Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Éc. Norm. Supér., Volume 69 (1952), pp. 109-182 | DOI | Numdam | Zbl

[43] Shing-Tung Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | Zbl

[44] Qi Zhang Rational connectedness of log Q-Fano varieties, J. Reine Angew. Math., Volume 590 (2006), pp. 131-142 | DOI | MR | Zbl

[45] Stanisław Łojasiewicz Introduction to Complex Analytic Geometry, Birkhäuser, 1991 (Translated from the Polish by Maciej Klimek) | DOI

Cité par Sources :

Commentaires - Politique