Il est notoire que Sullivan a démontré que le groupe de difféotopie d’une variété de haute dimension simplement connexe est commensurable avec un groupe arithmétique, mais la signification du terme « commensurable » dans son théorème semble bien moins connue. Nous expliquons la raison pour laquelle ce résultat n’est plus vrai en utilisant la définition désomais standard de commensurabilité en exhibant une variété dont le groupe de difféotopie n’est pas résiduellement fini. Il n’est pas question d’un problème avec le théorème de Sullivan, mais plutôt d’y ajouter une glose.
It is well known that Sullivan showed that the mapping class group of a simply connected high-dimensional manifold is commensurable with an arithmetic group, but the meaning of “commensurable” in this statement seems to be less well known. We explain why this result fails with the now standard definition of commensurability by exhibiting a manifold whose mapping class group is not residually finite. We do not suggest any problem with Sullivan’s result: rather we provide a gloss for it.
Révisé le :
Accepté le :
Publié le :
Manuel Krannich 1 ; Oscar Randal-Williams 1

@article{CRMATH_2020__358_4_469_0, author = {Manuel Krannich and Oscar Randal-Williams}, title = {Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic}, journal = {Comptes Rendus. Math\'ematique}, pages = {469--473}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.61}, language = {en}, }
TY - JOUR AU - Manuel Krannich AU - Oscar Randal-Williams TI - Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic JO - Comptes Rendus. Mathématique PY - 2020 SP - 469 EP - 473 VL - 358 IS - 4 PB - Académie des sciences, Paris DO - 10.5802/crmath.61 LA - en ID - CRMATH_2020__358_4_469_0 ER -
%0 Journal Article %A Manuel Krannich %A Oscar Randal-Williams %T Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic %J Comptes Rendus. Mathématique %D 2020 %P 469-473 %V 358 %N 4 %I Académie des sciences, Paris %R 10.5802/crmath.61 %G en %F CRMATH_2020__358_4_469_0
Manuel Krannich; Oscar Randal-Williams. Mapping class groups of simply connected high-dimensional manifolds need not be arithmetic. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 469-473. doi : 10.5802/crmath.61. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.61/
[1] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1982, x+306 pages | MR | Zbl
[2] Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Math. Acad. Sci. Paris, Volume 287 (1978) no. 4, p. A203-A208 | MR | Zbl
[3] Abelian quotients of mapping class groups of highly connected manifolds, Math. Ann., Volume 365 (2016) no. 1-2, pp. 857-879 | DOI | MR | Zbl
[4] Modular Lagrangians and the theta multiplier, Invent. Math., Volume 100 (1990) no. 1, pp. 143-165 | DOI | MR | Zbl
[5] Groups of homotopy spheres. I, Ann. Math., Volume 77 (1963), pp. 504-537 | DOI | MR | Zbl
[6] Mapping class groups of highly connected
[7] Isotopy classes of diffeomorphisms of
[8] Die Signatur von lokalen Koeffizientensystemen und Faserbündeln, Bonn. Math. Schr. (1972) no. 53, p. viii+59 | MR | Zbl
[9] Die Signatur von Flächenbündeln, Math. Ann., Volume 201 (1973), pp. 239-264 | DOI | MR | Zbl
[10] A lattice with no torsion-free subgroup of finite index (after P. Deligne) (2009) (Available at http://people.uleth.ca/~dave.morris/talks/deligne-torsion.pdf)
[11] Arithmetic groups, Homological group theory (Proc. Sympos., Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36 (1979), pp. 105-136 | DOI | MR | Zbl
[12] Genetics of homotopy theory and the Adams conjecture, Ann. Math., Volume 100 (1974), pp. 1-79 | DOI | MR | Zbl
[13] Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 269-331 | DOI | Numdam | MR | Zbl
[14] Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., Volume 28 (1954), pp. 17-86 | DOI | MR | Zbl
- Monodromy and mapping class groups of 3-dimensional hypersurfaces, Mathematische Annalen, Volume 391 (2025) no. 2, pp. 1965-2003 | DOI:10.1007/s00208-024-02951-4 | Zbl:7974004
- The homology of moduli spaces of 4-manifolds may be infinitely generated, Forum of Mathematics, Pi, Volume 12 (2024), p. 18 (Id/No e25) | DOI:10.1017/fmp.2024.26 | Zbl:7959039
- Finiteness properties of automorphism spaces of manifolds with finite fundamental group, Mathematische Annalen, Volume 388 (2024) no. 4, pp. 3321-3371 | DOI:10.1007/s00208-023-02594-x | Zbl:1539.57033
- Asymptotic mapping class groups of Cantor manifolds and their finiteness properties (with an appendix by Oscar Randal-Williams), Revista Matemática Iberoamericana, Volume 40 (2024) no. 6, pp. 2003-2072 | DOI:10.4171/rmi/1502 | Zbl:7958539
- Diffeomorphisms of discs, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 4. Sections 5–8, Berlin: European Mathematical Society (EMS), 2023, pp. 2856-2878 | DOI:10.4171/icm2022/16 | Zbl:1540.57048
- Mapping class groups of highly connected
-manifolds, Selecta Mathematica. New Series, Volume 26 (2020) no. 5, p. 49 (Id/No 81) | DOI:10.1007/s00029-020-00600-7 | Zbl:1512.57044
Cité par 6 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier