Comptes Rendus
Équations différentielles stochastiques
A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 99-104.

The eigenvalue problem of stochastic Hamiltonian systems with boundary conditions was studied by Peng [4] in 2000. For the one-dimensional case, denoting by {λn}n=1 all the eigenvalues of such an eigenvalue problem, Peng proved that λn+ as n. In this short note, we prove that the growth order of λn is the same as n2. Apart from the interest of this result in itself, the statistic periodicity of solutions of FBSDEs can be estimated directly by corresponding coefficients and time duration.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.103
Classification : 34L15, 60H10

Guangdong Jing 1 ; Penghui Wang 2

1 School of Mathematics, Shandong University Jinan, Shandong 250100, The People’s Republic of China
2 School of Mathematics, Shandong University Jinan, Shandong 250100, The People’s Republic of China.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_1_99_0,
     author = {Guangdong Jing and Penghui Wang},
     title = {A note on {{\textquotedblleft}Problem} of eigenvalues of stochastic {Hamiltonian} systems with boundary conditions{\textquotedblright}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {99--104},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.103},
     language = {en},
}
TY  - JOUR
AU  - Guangdong Jing
AU  - Penghui Wang
TI  - A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 99
EP  - 104
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.103
LA  - en
ID  - CRMATH_2021__359_1_99_0
ER  - 
%0 Journal Article
%A Guangdong Jing
%A Penghui Wang
%T A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”
%J Comptes Rendus. Mathématique
%D 2021
%P 99-104
%V 359
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.103
%G en
%F CRMATH_2021__359_1_99_0
Guangdong Jing; Penghui Wang. A note on “Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions”. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 99-104. doi : 10.5802/crmath.103. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.103/

[1] Ying Hu; Shige Peng Solution of forward-backward stochastic differential equations, Probab. Theory Relat. Fields, Volume 103 (1995) no. 2, pp. 273-283 | MR | Zbl

[2] Jin Ma; Philip Protter; Jiongmin Yong Solving forward-backward stochastic differential equations explicitly — a four step scheme, Probab. Theory Relat. Fields, Volume 98 (1994) no. 3, pp. 339-359 | MR | Zbl

[3] Jin Ma; Zhen Wu; Detao Zhang; Jianfeng Zhang On well-posedness of forward-backward SDEs — a unified approach, Ann. Appl. Probab., Volume 25 (2015) no. 4, pp. 2168-2214 | MR | Zbl

[4] Shige Peng Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions, Stoch. Proc. Appl., Volume 88 (2000) no. 2, pp. 259-290 | DOI | MR | Zbl

[5] Shige Peng; Zhen Wu Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optimization, Volume 37 (1999) no. 3, pp. 825-843 | DOI | MR | Zbl

[6] Haiyang Wang; Zhen Wu Eigenvalues of stochastic Hamiltonian systems driven by Poisson process with boundary conditions, Bound. Value Probl., Volume 2017 (2017), 164 | MR | Zbl

Cité par Sources :

Commentaires - Politique