By studying the variable denominators introduced by X. Zhou–L. Zhu, we generalize the results of D. Popovici for the
Accepté le :
Publié le :
Keywords: Continuation of analytic objects in several complex variables; Sheaves and cohomology of sections of holomorphic vector bundles, general results, Kähler manifolds, Exhaustion functions
Sheng Rao 1, 2 ; Runze Zhang 3

@article{CRMATH_2021__359_2_181_0, author = {Sheng Rao and Runze Zhang}, title = {$L^2$ extension theorem for jets with variable denominators}, journal = {Comptes Rendus. Math\'ematique}, pages = {181--193}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.167}, language = {en}, }
Sheng Rao; Runze Zhang. $L^2$ extension theorem for jets with variable denominators. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 181-193. doi : 10.5802/crmath.167. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.167/
[1] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | DOI | MR | Zbl
[2] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | DOI | MR | Zbl
[3]
[4] Estimations
[5] On the Ohsawa–Takegoshi–Manivel
[6] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Advanced Lectures in Mathematics (ALM)), Volume 35, International Press, 2016, pp. 191-222 | MR | Zbl
[7] A solution of an
[8] On the Ohsawa–Takegoshi
[9] The optimal jet
[10] Un théorème de prolongement
[11] Analytic inversion of adjunction:
[12] Extension of jets with
[13] On the extension of
[14]
[15] An optimal
[16] Siu’s lemma, optimal
[17] On the Ohsawa–Takegoshi
Cité par Sources :
Commentaires - Politique