By studying the variable denominators introduced by X. Zhou–L. Zhu, we generalize the results of D. Popovici for the extension theorem for jets. As a direct corollary, we also give a generalization of T. Ohsawa–K. Takegoshi’s extension theorem to a jet version.
Accepté le :
Publié le :
Keywords: Continuation of analytic objects in several complex variables; Sheaves and cohomology of sections of holomorphic vector bundles, general results, Kähler manifolds, Exhaustion functions
Sheng Rao 1, 2 ; Runze Zhang 3
CC-BY 4.0
@article{CRMATH_2021__359_2_181_0,
author = {Sheng Rao and Runze Zhang},
title = {$L^2$ extension theorem for jets with variable denominators},
journal = {Comptes Rendus. Math\'ematique},
pages = {181--193},
year = {2021},
publisher = {Acad\'emie des sciences, Paris},
volume = {359},
number = {2},
doi = {10.5802/crmath.167},
language = {en},
}
Sheng Rao; Runze Zhang. $L^2$ extension theorem for jets with variable denominators. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 181-193. doi: 10.5802/crmath.167
[1] A proof of the Ohsawa–Takegoshi theorem with sharp estimates, J. Math. Soc. Japan, Volume 68 (2016) no. 4, pp. 1461-1472 | Zbl | MR | DOI
[2] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013) no. 1, pp. 149-158 | MR | DOI | Zbl
[3] extension of -closed forms on weakly pseudoconvex Kähler manifolds (2020) (https://arxiv.org/abs/2009.14101)
[4] Estimations pour l’opérateur d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété kählérienne complète, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982), pp. 457-511 | Zbl | Numdam | DOI
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Complex analysis and geometry (Paris, 1997) (Progress in Mathematics), Volume 188, Birkhäuser, 2000, pp. 47-82 | Zbl | MR | DOI
[6] Extension of holomorphic functions defined on non reduced analytic subvarieties, The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I (Advanced Lectures in Mathematics (ALM)), Volume 35, International Press, 2016, pp. 191-222 | Zbl | MR
[7] A solution of an extension problem with an optimal estimate and applications, Ann. Math., Volume 181 (2015) no. 3, pp. 1139-1208 | MR | DOI | Zbl
[8] On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 13-14, pp. 797-800 | Zbl | MR | DOI
[9] The optimal jet extension of Ohsawa–Takegoshi type, Nagoya Math. J., Volume 239 (2020), pp. 153-172 | Zbl | MR | DOI
[10] Un théorème de prolongement de sections holomorphes d’un fibré hermitien, Math. Z., Volume 212 (1993) no. 1, pp. 107-122 | Zbl | DOI
[11] Analytic inversion of adjunction: extension theorems with gain, Ann. Inst. Fourier, Volume 57 (2007) no. 3, pp. 703-718 | Zbl | Numdam | MR | DOI
[12] Extension of jets with estimates, and an application (2017) (https://arxiv.org/abs/1707.04483)
[13] On the extension of holomorphic functions, Math. Z., Volume 195 (1987) no. 2, pp. 197-204 | Zbl | DOI
[14] extension for jets of holomorphic sections of a hermitian line bundle, Nagoya Math. J., Volume 180 (2005), pp. 1-34 | Zbl | MR | DOI
[15] An optimal extension theorem on weakly pseudoconvex Kähler manifolds, J. Differ. Geom., Volume 110 (2018) no. 1, pp. 135-186 | DOI
[16] Siu’s lemma, optimal extension and applications to twisted pluricanonical sheaves, Math. Ann., Volume 377 (2020) no. 1-2, pp. 675-722 | Zbl | MR | DOI
[17] On the Ohsawa–Takegoshi extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601 | Zbl | MR
Cité par Sources :
Commentaires - Politique
