Let
Soit
Accepté le :
Accepté après révision le :
Publié le :
Andrea T. Ricolfi 1

@article{CRMATH_2021__359_3_257_0, author = {Andrea T. Ricolfi}, title = {The equivariant {Atiyah} class}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--282}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.166}, language = {en}, }
Andrea T. Ricolfi. The equivariant Atiyah class. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 257-282. doi : 10.5802/crmath.166. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.166/
[1] Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | DOI | MR | Zbl
[2] Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math., Volume 746 (2019), pp. 235-303 | DOI | MR | Zbl
[3] Virtual counts on Quot schemes and the higher rank local DT/PT correspondence (2018) (to appear in Math. Res. Lett.)
[4] The intrinsic normal cone, Invent. Math., Volume 128 (1997) no. 1, pp. 45-88 | DOI | MR | Zbl
[5] Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory, Volume 2 (2008), pp. 313-345 | DOI | MR | Zbl
[6] Equivariant sheaves and functors, Lecture Notes in Mathematics, 1578, Springer, 1994, iv+139 pages | DOI | MR | Zbl
[7] Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6. Théorie des intersections et théorème de Riemann-Roch. (Pierre Berthelot; Alexander Grothendieck; Luc Illusie, eds.), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl
[8] Higher rank motivic Donaldson–Thomas invariants of
[9] The local motivic DT/PT correspondence (2019) (https://arxiv.org/abs/1905.12458)
[10] Lectures on invariant theory, London Mathematical Society Lecture Note Series, 296, Cambridge University Press, 2003, xvi+220 pages | DOI | MR | Zbl
[11] Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol., Volume 14 (2010) no. 1, pp. 83-115 | DOI | MR | Zbl
[12] Higher rank K-theoretic Donaldson–Thomas theory of points, Forum Math. Sigma, Volume 9 (2021), e15 | DOI | MR | Zbl
[13] Jet bundles on Gorenstein curves and applications, J. Singul., Volume 21 (2020), pp. 50-83 | MR | Zbl
[14] Rank 2 Sheaves on Toric 3-Folds: Classical and Virtual Counts, Int. Math. Res. Not., Volume 2018 (2018) no. 10, pp. 2981-3069 | DOI | MR | Zbl
[15] Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl
[16] Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci. (1960) no. 4, p. 228 | Numdam | MR | Zbl
[17] One positive and two negative results for derived categories of algebraic stacks, J. Inst. Math. Jussieu, Volume 18 (2019) no. 5, pp. 1087-1111 | DOI | MR | Zbl
[18] Algebraic groups and compact generation of their derived categories of representations, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1903-1923 | DOI | MR | Zbl
[19] Perfect complexes on algebraic stacks, Compos. Math., Volume 153 (2017) no. 11, pp. 2318-2367 | DOI | MR | Zbl
[20] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | Zbl
[21] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | DOI | Zbl
[22] Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., Volume 346 (2010) no. 3, pp. 545-569 | DOI | MR | Zbl
[23] Erratum to: Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes [MR2578562], Math. Ann., Volume 358 (2014) no. 1-2, pp. 561-563 | DOI | Zbl
[24] Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239, Springer, 1971, xv+355 pages | MR | Zbl
[25] Complexe cotangent et déformations. II, Lecture Notes in Mathematics, 283, Springer, 1972, vii+304 pages | MR | Zbl
[26] Relation between two twisted inverse image pseudofunctors in duality theory, Compos. Math., Volume 151 (2015) no. 4, pp. 735-764 | DOI | MR | Zbl
[27] Fixed point loci of moduli spaces of sheaves on toric varieties, Adv. Math., Volume 227 (2011) no. 4, pp. 1700-1755 | DOI | MR | Zbl
[28] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 39, Springer, 2000, xii+208 pages | Zbl
[29] Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., Volume 11 (1998) no. 1, pp. 119-174 | DOI | MR | Zbl
[30] Notes on derived functors and Grothendieck duality, Foundations of Grothendieck duality for diagrams of schemes (Lecture Notes in Mathematics), Volume 1960, Springer, 2009, pp. 1-259 | DOI | MR
[31] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 34, Springer, 1994, xiv+292 pages | DOI | MR
[32] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | DOI | MR | Zbl
[33] An improvement of the base-change theorem and the functor
[34] Sheaves on Artin stacks, J. Reine Angew. Math., Volume 603 (2007), pp. 55-112 | DOI | MR | Zbl
[35] Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | DOI | MR | Zbl
[36] Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics, 2019 (https://arxiv.org/abs/1903.08787) | Zbl
[37] The DT/PT correspondence for smooth curves, Math. Z., Volume 290 (2018) no. 1-2, pp. 699-710 | DOI | MR | Zbl
[38] Local contributions to Donaldson–Thomas invariants, Int. Math. Res. Not., Volume 2018 (2018) no. 19, pp. 5995-6025 | DOI | MR | Zbl
[39] On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl, Volume 144 (2020), pp. 50-68 | DOI | MR | Zbl
[40] Virtual classes and virtual motives of Quot schemes on threefolds, Adv. Math., Volume 369 (2020), p. 107182 | DOI | MR | Zbl
[41] Toroidal algebraic groups, Proc. Am. Math. Soc., Volume 12 (1961), pp. 984-988 | DOI | MR | Zbl
[42] Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra, Volume 177 (2003) no. 1, pp. 103-112 | DOI | MR | Zbl
[43] Resolutions of unbounded complexes, Compos. Math., Volume 65 (1988) no. 2, pp. 121-154 | Numdam | MR | Zbl
[44] Stacks Project, 2016 (http://stacks.math.columbia.edu)
[45] Equivariant completion II, J. Math. Kyoto Univ., Volume 15 (1975) no. 3, pp. 573-605 | DOI | MR | Zbl
[46] Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987) no. 1, pp. 16-34 | DOI | MR | Zbl
[47] Higher algebraic
[48] The resolution property for schemes and stacks, J. Reine Angew. Math., Volume 577 (2004), pp. 1-22 | DOI | MR | Zbl
[49] Double affine Hecke algebras and affine flag manifolds, I, Affine Flag Manifolds and Principal Bundles (2010), pp. 233-289 | DOI | Zbl
Cité par Sources :
Commentaires - Politique