A theorem characterizing analytically balls in the Euclidean space
Révisé le :
Accepté le :
Publié le :
Nikolay Kuznetsov 1

@article{CRMATH_2021__359_8_945_0, author = {Nikolay Kuznetsov}, title = {Characterization of balls via solutions of the modified {Helmholtz} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {945--948}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.250}, language = {en}, }
Nikolay Kuznetsov. Characterization of balls via solutions of the modified Helmholtz equation. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 945-948. doi : 10.5802/crmath.250. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.250/
[1] The volume mean-value property of harmonic functions, Complex Variables, Theory Appl., Volume 13 (1990) no. 3-4, pp. 185-193 | DOI | MR | Zbl
[2] On the mean-value property of harmonic functions, Proc. Am. Math. Soc., Volume 13 (1962), p. 830 | MR | Zbl
[3] Inverse mean value property of harmonic functions, Math. Ann., Volume 297 (1993) no. 1, pp. 147-156 corrigendum in ibid. 303 (1995), no. 2, p.373-375 | DOI | MR | Zbl
[4] A converse of the mean value theorem for harmonic functions, Russ. Math. Surv., Volume 36 (1981) no. 5, pp. 159-160 | MR
[5] On the mean value property of harmonic functions, Bull. Lond. Math. Soc., Volume 4 (1972), pp. 311-312 | DOI | MR | Zbl
[6] Mean value properties of solutions to the Helmholtz and modified Helmholtz equations (2021) (to appear in Russian) | arXiv | Zbl
[7] Metaharmonic functions: mean flux theorem, its converse and related properties, Algebra Anal., Volume 33 (2021), pp. 82-97 | MR
[8] Mean value property and harmonic functions, Classical and modern potential theory and applications (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 430, Kluwer Academic Publishers, 1994, pp. 359-398 | DOI | MR | Zbl
[9] Allgemeine Untersuchungen über das Newton’sche Princip der Fernwirkungen, Teubner, 1896 | Zbl
[10] Special Functions of Mathematical Physics: A Unified Introduction with Applications, Birkhäuser, 1988 | Zbl
[11] Generalizations of the Gauss law of the spherical mean, Trans. Am. Math. Soc., Volume 43 (1938), pp. 199-225 | DOI | MR | Zbl
[12] A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944 | Zbl
- On mean value properties involving a logarithm-type weight., Mathematica Bohemica, Volume 149 (2024) no. 3, pp. 419-425 | DOI:10.21136/mb.2023.0072-23 | Zbl:7953711
- Panharmonic functions: mean value properties and related topics, Journal of Mathematical Sciences (New York), Volume 269 (2023) no. 1, pp. 53-76 | DOI:10.1007/s10958-023-06254-y | Zbl:1514.35119
- Weighted means and characterization of balls, Journal of Mathematical Sciences (New York), Volume 269 (2023) no. 6, pp. 853-858 | DOI:10.1007/s10958-023-06323-2 | Zbl:1536.31010
- Inverse mean value properties (a survey), Journal of Mathematical Sciences (New York), Volume 262 (2022) no. 3, pp. 275-290 | DOI:10.1007/s10958-022-05816-w | Zbl:1494.31011
- Inverse mean value property of metaharmonic functions, Journal of Mathematical Sciences (New York), Volume 264 (2022) no. 5, pp. 603-608 | DOI:10.1007/s10958-022-06019-z | Zbl:1497.35109
- “Potato kugel” for nuclear forces and a small one for acoustic waves, Journal of Mathematical Sciences (New York), Volume 267 (2022) no. 3, pp. 375-381 | DOI:10.1007/s10958-022-06140-z | Zbl:1501.35141
- On relations between harmonic and panharmonic functions, Journal of Mathematical Sciences (New York), Volume 267 (2022) no. 4, pp. 494-500 | DOI:10.1007/s10958-022-06154-7 | Zbl:1535.35010
Cité par 7 documents. Sources : zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier