Dans cet article, je montrerai que l’équation de Pell–Abel possède une solution de degré
In this paper, we show that there are solutions of degree
Accepté le :
Publié le :
Quentin Gendron 1, 2

@article{CRMATH_2022__360_G9_975_0, author = {Quentin Gendron}, title = {\'Equation de {Pell{\textendash}Abel} et applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {975--992}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.346}, language = {fr}, }
Quentin Gendron. Équation de Pell–Abel et applications. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 975-992. doi : 10.5802/crmath.346. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.346/
[1] Ueber die Integration der Differential-Formel
[2] Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen, Bull. Soc. Phys.-Math. Kazan, III. Ser., Volume 3 (1928) no. 2, pp. 1-69 | Zbl
[3] Strata of
[4] Torsion points of order
[5] Effective computation of Chebyshev polynomials for several intervals, Sb. Math., Volume 190 (1999) no. 11, pp. 15-50 traduction anglaise, Mat. Sb. 190, No. 11, 1571–1605 (1999) | MR | Zbl
[6] Chebyshev representation for rational functions, Sb. Math., Volume 201 (2010) no. 11, pp. 1579-1598 | DOI | MR | Zbl
[7] Extremal polynomials and Riemann surfaces, Springer Monographs in Mathematics, Springer, 2012 | DOI | Zbl
[8] Theta functions and singular torsion on elliptic curves, Number theory for the millennium I. Proceedings of the millennial conference on number theory, Peters, 2002, pp. 111-126 | Zbl
[9] On Dirichlet, Poncelet and Abel problems, Commun. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1587-1633 | DOI | MR | Zbl
[10] Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Frontiers in Mathematics, Birkhäuser, 2011 | Zbl
[11] Periodic Ellipsoidal Billiard Trajectories and Extremal Polynomials, Commun. Math. Phys., Volume 372 (2019) no. 1, pp. 183-211 | DOI | MR | Zbl
[12]
[13] Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, 1994 (Reprint of the 1978 original) | DOI | Zbl
[14] Sur certains sous-groupes de torsion de jacobiennes de courbes hyperelliptiques de genre
[15] Rational billiards and flat structures, Handbook of dynamical systems. Volume 1A, North-Holland, 2002, pp. 1015-1089 | DOI | Zbl
[16] Teichmüller curves in genus two : Torsion divisors and ratios of sines, Invent. Math., Volume 165 (2006) no. 3, pp. 651-672 | DOI | Zbl
[17] Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques, Ann. Inst. Fourier, Volume 48 (1998) no. 2, pp. 323-351 | DOI | Numdam | MR | Zbl
[18] Uniformisation des surfaces de Riemann. Retour sur un théorème centenaire, ENS Éditions, 2010 | Zbl
[19] Distribution asymptotique des valeurs propres des endomorphismes de Frobenius (d’après Abel, Chebyshev, Robinson,...), Séminaire Bourbaki 2017/18 (70e année). Exposés 1136–1150 (Astérisque), Volume 414, Société Mathématique de France, 2019, pp. 379-426 (Exp. 1146) | Zbl
[20] Functions least deviating from zero on closed subsets of the real axis, Algebra Anal., Volume 4 (1992) no. 2, pp. 1-61 traduction anglaise, St. Petersburg Math. J., 4.2, p. 201–249, (1993) | Zbl
[21] Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 5, Springer, 1984 | DOI | Zbl
[22] Théorie des mécanismes connus sous le nom de parallélogrammes, Mém. Acad. Sci. Pétersb, Volume 7 (1854), pp. 539-568
[23] Division by 2 on odd-degree hyperelliptic curves and their Jacobians, Izv. Math., Volume 83 (2019) no. 3, pp. 501-520 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique