[Recollement d’instantons à la Brezis–Coron en dimension quatre et la construction de dipôles]
Given a connection $A$ on a $\operatorname{SU}(2)$-bundle $P$ over $\mathbb{R}^4$ with finite Yang–Mills energy $\operatorname{YM}(A)$ and nonzero curvature $F_A(0)$ at the origin, and given $\rho >0$ small enough, we construct a new connection $\hat{A}$ on a bundle $\hat{P}$ of different Chern class ($\left|c_2(A)-c_2(\hat{A}) \right|= 8\pi ^2$), in such a way that $\hat{A}$ is gauge equivalent to $A$ in $\mathbb{R}^4\setminus B_\rho (0)$, gauge equivalent to an instanton in a smaller ball $B_{\tau \rho }(0)$, and
| \[ \operatorname{YM}(\hat{A})\le \operatorname{YM}(A)+8\pi ^2-\varepsilon _0\rho ^4\left|F_A(0) \right|^2, \] |
where $\tau \in (0.3,0.4)$ and $\varepsilon _0>0$ are universal constants independent of $A$ and $\rho $. Our gluing method is similar in spirit to the one of Brezis–Coron for harmonic maps. We compare it with classical results by Taubes and discuss applications and open problems.
Étant donnée une connexion $A$ sur un fibré principal $P$ en groupe $\operatorname{SU}(2)$ sur $\mathbb{R}^4$ avec une énergie de Yang–Mills finie égale à $\operatorname{YM}(A)$ et ayant une courbure non nulle $F_A(0)$ à l’origine, et étant donné un rayon $\rho >0$ suffisamment petit, nous construisons une nouvelle connexion $\hat{A}$ sur un $\operatorname{SU}(2)$ fibré principal $\hat{P}$, de classe de Chern différente à celle de $P$ ($\left|c_2(A)-c_2(\hat{A}) \right|= 8\pi ^2$), de telle sorte que $\hat{A}$ soit équivalente de jauge à $A$ dans $\mathbb{R}^4\setminus B_\rho (0)$ et équivalente de jauge à un instanton dans une boule plus petite $B_{\tau \rho }(0)$, et de telle sorte que le coût d’énergie de Yang–Mills soit strictement inférieur à la somme de $\operatorname{YM}(A)$ et de l’énergie de l’instanton inséré. Précisément nous avons
| \[ \operatorname{YM}(\hat{A})\le \operatorname{YM}(A)+8\pi ^2-\varepsilon _0\rho ^4\left|F_A(0) \right|^2, \] |
où $\tau \in (0.3,0.4)$ et $\varepsilon _0>0$ sont des constantes universelles indépendantes de $A$ et de $\rho $. Notre méthode de recollement est similaire dans l’esprit à celle de Brezis–Coron pour les applications harmoniques utilisée pour construire de nouvelles solutions. Nous la comparons par ailleurs avec des résultats classiques de Taubes sur les champs de Yang–Mills et discutons ses applications existantes et potentielles ainsi que des problèmes ouverts.
Révisé le :
Accepté le :
Publié le :
Luca Martinazzi  1 ; Tristan Rivière  2
CC-BY 4.0
@article{CRMATH_2025__363_G11_1219_0,
author = {Luca Martinazzi and Tristan Rivi\`ere},
title = {Gluing instantons \`a la {Brezis{\textendash}Coron} in dimension four and the dipole construction},
journal = {Comptes Rendus. Math\'ematique},
pages = {1219--1261},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.795},
language = {en},
}
TY - JOUR AU - Luca Martinazzi AU - Tristan Rivière TI - Gluing instantons à la Brezis–Coron in dimension four and the dipole construction JO - Comptes Rendus. Mathématique PY - 2025 SP - 1219 EP - 1261 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.795 LA - en ID - CRMATH_2025__363_G11_1219_0 ER -
Luca Martinazzi; Tristan Rivière. Gluing instantons à la Brezis–Coron in dimension four and the dipole construction. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1219-1261. doi: 10.5802/crmath.795
[1] Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), Volume 55 (1976) no. 3, pp. 269-296 | MR | Zbl
[2] Relaxed energies for harmonic maps, Variational methods (Paris, 1988) (Henri Berestycki; Jean-Michel Coron; Ivar Ekeland, eds.) (Progress in Nonlinear Differential Equations and their Applications), Volume 4, Birkhäuser, 1990, pp. 37-52 | DOI | MR | Zbl
[3] Large solutions for harmonic maps in two dimensions, Commun. Math. Phys., Volume 92 (1983) no. 2, pp. 203-215 | MR | DOI | Zbl
[4] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705 | MR | DOI | Zbl
[5] Coulomb gauges and regularity for stationary weak Yang–Mills connections in supercritical dimension (2025) | arXiv | Zbl
[6] Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differ. Geom., Volume 36 (1992) no. 2, pp. 507-515 | MR | Zbl
[7] Characteristic forms and geometric invariants, Ann. Math. (2), Volume 99 (1974), pp. 48-69 | DOI | MR | Zbl
[8] How to integrate a polynomial over a sphere, Am. Math. Mon., Volume 108 (2001) no. 5, pp. 446-448 | DOI | MR | Zbl
[9] Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, 1, Springer, 1991, xxii+194 pages | DOI | MR
[10] A priori estimates for harmonic mappings, J. Reine Angew. Math., Volume 336 (1982), pp. 124-164 | DOI | MR | Zbl
[11] Cartesian currents and variational problems for mappings into spheres, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 16 (1989) no. 3, pp. 393-485 | MR | Numdam | Zbl
[12] Geometric evolution equations in critical dimensions, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 4, pp. 499-512 | DOI | MR | Zbl
[13] Axially symmetric harmonic maps minimizing a relaxed energy, Commun. Pure Appl. Math., Volume 45 (1992) no. 4, pp. 417-459 | DOI | MR | Zbl
[14] One-dimensional half-harmonic maps into the circle and their degree, Nonlinear Anal., Theory Methods Appl., Volume 261 (2025), 113904, 23 pages | DOI | MR | Zbl
[15] On topologically distinct solutions of the Dirichlet problem for Yang–Mills connections, Calc. Var. Partial Differ. Equ., Volume 5 (1997) no. 4, pp. 345-358 | DOI | MR | Zbl
[16] The Dirichlet problem for harmonic maps from a surface with boundary onto a -sphere with nonconstant boundary values, J. Differ. Geom., Volume 19 (1984) no. 2, pp. 393-401 | MR | Zbl
[17] Minimizing the energy of maps from a surface into a -sphere with prescribed degree and boundary values, Manuscr. Math., Volume 83 (1994) no. 1, pp. 31-38 | DOI | MR | Zbl
[18] The theory of gauge fields in four dimensions, CBMS Regional Conference Series in Mathematics, 58, American Mathematical Society, 1985, vii+101 pages | DOI | MR | Zbl
[19] A note on -axially symmetric harmonic maps from to minimizing the relaxed energy, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 3099-3117 | DOI | MR | Zbl
[20] The resolution of the Yang–Mills Plateau problem in super-critical dimensions, Adv. Math., Volume 316 (2017), pp. 469-540 | DOI | MR | Zbl
[21] Applications harmoniques de dans ayant une ligne de singularités, C. R. Math., Volume 313 (1991) no. 9, pp. 583-587 | MR | Zbl
[22] Everywhere discontinuous harmonic maps into spheres, Acta Math., Volume 175 (1995) no. 2, pp. 197-226 | DOI | MR | Zbl
[23] The variations of Yang–Mills Lagrangian, Geometric analysis—in honor of Gang Tian’s 60th birthday (Jingyi Chen; Peng Lu; Zhiqin Lu; Zhou Zhang, eds.) (Progress in Mathematics), Volume 333, Birkhäuser/Springer, 2020, pp. 305-379 | DOI | MR | Zbl
[24] Global existence of the equivariant Yang–Mills heat flow in four space dimensions, Am. J. Math., Volume 120 (1998) no. 1, pp. 117-128 | MR | DOI | Zbl
[25] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., Volume 20 (1984) no. 2, pp. 479-495 | MR | Zbl
[26] The topology of spaces of rational functions, Acta Math., Volume 143 (1979) no. 1-2, pp. 39-72 | DOI | MR | Zbl
[27] Path-connected Yang–Mills moduli spaces, J. Differ. Geom., Volume 19 (1984) no. 2, pp. 337-392 | MR | Zbl
[28] The stable topology of self-dual moduli spaces, J. Differ. Geom., Volume 29 (1989) no. 1, pp. 163-230 | MR | Zbl
[29] Removable singularities in Yang–Mills fields, Commun. Math. Phys., Volume 83 (1982) no. 1, pp. 11-29 | MR | DOI | Zbl
[30] Long-time existence for Yang–Mills flow, Invent. Math., Volume 217 (2019) no. 3, pp. 1069-1147 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
