Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Gluing instantons à la Brezis–Coron in dimension four and the dipole construction
[Recollement d’instantons à la Brezis–Coron en dimension quatre et la construction de dipôles]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1219-1261

Cet article fait partie du numéro thématique De génération en génération : l'héritage mathématique de Haïm Brezis coordonné par Henri Berestycki et al..  

Given a connection $A$ on a $\operatorname{SU}(2)$-bundle $P$ over $\mathbb{R}^4$ with finite Yang–Mills energy $\operatorname{YM}(A)$ and nonzero curvature $F_A(0)$ at the origin, and given $\rho >0$ small enough, we construct a new connection $\hat{A}$ on a bundle $\hat{P}$ of different Chern class ($\left|c_2(A)-c_2(\hat{A}) \right|= 8\pi ^2$), in such a way that $\hat{A}$ is gauge equivalent to $A$ in $\mathbb{R}^4\setminus B_\rho (0)$, gauge equivalent to an instanton in a smaller ball $B_{\tau \rho }(0)$, and

\[ \operatorname{YM}(\hat{A})\le \operatorname{YM}(A)+8\pi ^2-\varepsilon _0\rho ^4\left|F_A(0) \right|^2, \]

where $\tau \in (0.3,0.4)$ and $\varepsilon _0>0$ are universal constants independent of $A$ and $\rho $. Our gluing method is similar in spirit to the one of Brezis–Coron for harmonic maps. We compare it with classical results by Taubes and discuss applications and open problems.

Étant donnée une connexion $A$ sur un fibré principal $P$ en groupe $\operatorname{SU}(2)$ sur $\mathbb{R}^4$ avec une énergie de Yang–Mills finie égale à $\operatorname{YM}(A)$ et ayant une courbure non nulle $F_A(0)$ à l’origine, et étant donné un rayon $\rho >0$ suffisamment petit, nous construisons une nouvelle connexion $\hat{A}$ sur un $\operatorname{SU}(2)$ fibré principal $\hat{P}$, de classe de Chern différente à celle de $P$ ($\left|c_2(A)-c_2(\hat{A}) \right|= 8\pi ^2$), de telle sorte que $\hat{A}$ soit équivalente de jauge à $A$ dans $\mathbb{R}^4\setminus B_\rho (0)$ et équivalente de jauge à un instanton dans une boule plus petite $B_{\tau \rho }(0)$, et de telle sorte que le coût d’énergie de Yang–Mills soit strictement inférieur à la somme de $\operatorname{YM}(A)$ et de l’énergie de l’instanton inséré. Précisément nous avons

\[ \operatorname{YM}(\hat{A})\le \operatorname{YM}(A)+8\pi ^2-\varepsilon _0\rho ^4\left|F_A(0) \right|^2, \]

$\tau \in (0.3,0.4)$ et $\varepsilon _0>0$ sont des constantes universelles indépendantes de $A$ et de $\rho $. Notre méthode de recollement est similaire dans l’esprit à celle de Brezis–Coron pour les applications harmoniques utilisée pour construire de nouvelles solutions. Nous la comparons par ailleurs avec des résultats classiques de Taubes sur les champs de Yang–Mills et discutons ses applications existantes et potentielles ainsi que des problèmes ouverts.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.795

Luca Martinazzi  1   ; Tristan Rivière  2

1 Department of Mathematics Guido Castelnuovo, Università di Roma La Sapienza, Italy
2 Department of Mathematics, ETH Zentrum, 8093 Zürich, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G11_1219_0,
     author = {Luca Martinazzi and Tristan Rivi\`ere},
     title = {Gluing instantons \`a la {Brezis{\textendash}Coron} in dimension four and the dipole construction},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1219--1261},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.795},
     language = {en},
}
TY  - JOUR
AU  - Luca Martinazzi
AU  - Tristan Rivière
TI  - Gluing instantons à la Brezis–Coron in dimension four and the dipole construction
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1219
EP  - 1261
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.795
LA  - en
ID  - CRMATH_2025__363_G11_1219_0
ER  - 
%0 Journal Article
%A Luca Martinazzi
%A Tristan Rivière
%T Gluing instantons à la Brezis–Coron in dimension four and the dipole construction
%J Comptes Rendus. Mathématique
%D 2025
%P 1219-1261
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.795
%G en
%F CRMATH_2025__363_G11_1219_0
Luca Martinazzi; Tristan Rivière. Gluing instantons à la Brezis–Coron in dimension four and the dipole construction. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1219-1261. doi: 10.5802/crmath.795

[1] Thierry Aubin Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), Volume 55 (1976) no. 3, pp. 269-296 | MR | Zbl

[2] F. Bethuel; Haïm Brezis; Jean-Michel Coron Relaxed energies for harmonic maps, Variational methods (Paris, 1988) (Henri Berestycki; Jean-Michel Coron; Ivar Ekeland, eds.) (Progress in Nonlinear Differential Equations and their Applications), Volume 4, Birkhäuser, 1990, pp. 37-52 | DOI | MR | Zbl

[3] Haïm Brezis; Jean-Michel Coron Large solutions for harmonic maps in two dimensions, Commun. Math. Phys., Volume 92 (1983) no. 2, pp. 203-215 | MR | DOI | Zbl

[4] Haïm Brezis; Jean-Michel Coron; Elliott H. Lieb Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649-705 | MR | DOI | Zbl

[5] Riccardo Caniato; Tristan Rivière Coulomb gauges and regularity for stationary weak Yang–Mills connections in supercritical dimension (2025) | arXiv | Zbl

[6] Kung-Ching Chang; Wei Yue Ding; Rugang Ye Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differ. Geom., Volume 36 (1992) no. 2, pp. 507-515 | MR | Zbl

[7] Shiing Shen Chern; James Simons Characteristic forms and geometric invariants, Ann. Math. (2), Volume 99 (1974), pp. 48-69 | DOI | MR | Zbl

[8] Gerald B. Folland How to integrate a polynomial over a sphere, Am. Math. Mon., Volume 108 (2001) no. 5, pp. 446-448 | DOI | MR | Zbl

[9] Daniel S. Freed; Karen K. Uhlenbeck Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, 1, Springer, 1991, xxii+194 pages | DOI | MR

[10] Mariano Giaquinta; Stefan Hildebrandt A priori estimates for harmonic mappings, J. Reine Angew. Math., Volume 336 (1982), pp. 124-164 | DOI | MR | Zbl

[11] Mariano Giaquinta; G. Modica; J. Souček Cartesian currents and variational problems for mappings into spheres, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 16 (1989) no. 3, pp. 393-485 | MR | Numdam | Zbl

[12] Joseph F. Grotowski; Jalal Shatah Geometric evolution equations in critical dimensions, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 4, pp. 499-512 | DOI | MR | Zbl

[13] Robert Hardt; Fang-Hua Lin; Chi-Cheung Poon Axially symmetric harmonic maps minimizing a relaxed energy, Commun. Pure Appl. Math., Volume 45 (1992) no. 4, pp. 417-459 | DOI | MR | Zbl

[14] Ali Hyder; Luca Martinazzi One-dimensional half-harmonic maps into the circle and their degree, Nonlinear Anal., Theory Methods Appl., Volume 261 (2025), 113904, 23 pages | DOI | MR | Zbl

[15] Takeshi Isobe; Antonella Marini On topologically distinct solutions of the Dirichlet problem for Yang–Mills connections, Calc. Var. Partial Differ. Equ., Volume 5 (1997) no. 4, pp. 345-358 | DOI | MR | Zbl

[16] Jürgen Jost The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary values, J. Differ. Geom., Volume 19 (1984) no. 2, pp. 393-401 | MR | Zbl

[17] Ernst Kuwert Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values, Manuscr. Math., Volume 83 (1994) no. 1, pp. 31-38 | DOI | MR | Zbl

[18] H. Blaine Lawson The theory of gauge fields in four dimensions, CBMS Regional Conference Series in Mathematics, 58, American Mathematical Society, 1985, vii+101 pages | DOI | MR | Zbl

[19] Luca Martinazzi A note on n-axially symmetric harmonic maps from B 3 to S 2 minimizing the relaxed energy, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 3099-3117 | DOI | MR | Zbl

[20] Mircea Petrache; Tristan Rivière The resolution of the Yang–Mills Plateau problem in super-critical dimensions, Adv. Math., Volume 316 (2017), pp. 469-540 | DOI | MR | Zbl

[21] Tristan Rivière Applications harmoniques de B 3 dans S 2 ayant une ligne de singularités, C. R. Math., Volume 313 (1991) no. 9, pp. 583-587 | MR | Zbl

[22] Tristan Rivière Everywhere discontinuous harmonic maps into spheres, Acta Math., Volume 175 (1995) no. 2, pp. 197-226 | DOI | MR | Zbl

[23] Tristan Rivière The variations of Yang–Mills Lagrangian, Geometric analysis—in honor of Gang Tian’s 60th birthday (Jingyi Chen; Peng Lu; Zhiqin Lu; Zhou Zhang, eds.) (Progress in Mathematics), Volume 333, Birkhäuser/Springer, 2020, pp. 305-379 | DOI | MR | Zbl

[24] Andreas E. Schlatter; Michael Struwe; A. Shadi Tahvildar-Zadeh Global existence of the equivariant Yang–Mills heat flow in four space dimensions, Am. J. Math., Volume 120 (1998) no. 1, pp. 117-128 | MR | DOI | Zbl

[25] Richard Schoen Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differ. Geom., Volume 20 (1984) no. 2, pp. 479-495 | MR | Zbl

[26] Graeme Segal The topology of spaces of rational functions, Acta Math., Volume 143 (1979) no. 1-2, pp. 39-72 | DOI | MR | Zbl

[27] Clifford Henry Taubes Path-connected Yang–Mills moduli spaces, J. Differ. Geom., Volume 19 (1984) no. 2, pp. 337-392 | MR | Zbl

[28] Clifford Henry Taubes The stable topology of self-dual moduli spaces, J. Differ. Geom., Volume 29 (1989) no. 1, pp. 163-230 | MR | Zbl

[29] Karen K. Uhlenbeck Removable singularities in Yang–Mills fields, Commun. Math. Phys., Volume 83 (1982) no. 1, pp. 11-29 | MR | DOI | Zbl

[30] Alex Waldron Long-time existence for Yang–Mills flow, Invent. Math., Volume 217 (2019) no. 3, pp. 1069-1147 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique