[Une nouvelle preuve d’un théorème de Liouville pour l’équation de Gross–Pitaevskii en dimension un]
The asymptotic stability of the black and dark solitons of the one-dimensional Gross–Pitaevskii equation was proved by Béthuel, Gravejat and Smets (Ann. Sci. Éc. Norm. Supér., 2015), and Gravejat and Smets (Proc. Lond. Math. Soc., 2015), using a rigidity property in the vicinity of solitons. We provide an alternate proof of the Liouville theorems in those two articles, using a factorization identity for the linearized operator which trivializes the spectral analysis.
La stabilité asymptotique des solitons de l’équation de Gross–Pitaevskii en dimension un a été démontrée par Béthuel, Gravejat et Smets (Ann. Sci. Éc. Norm. Supér., 2015), et Gravejat et Smets (Proc. Lond. Math. Soc., 2015), à l’aide d’une propriété de rigidité dans le voisinage d’un soliton. On donne une nouvelle démonstration des théorèmes de Liouville contenus dans ces articles, utilisant une identité de factorisation pour l’opérateur linéarisé qui rend triviale l’analyse spectrale du problème.
Révisé le :
Accepté le :
Publié le :
Keywords: Solitons, Gross–Pitaevskii equation, asymptotic stability
Mots-clés : Solitons, équation de Gross–Pitaevskii, stabilité asymptotique
Michał Kowalczyk  1 ; Yvan Martel  2
CC-BY 4.0
@article{CRMATH_2025__363_G12_1339_0,
author = {Micha{\l} Kowalczyk and Yvan Martel},
title = {A new proof of a {Liouville} theorem for the one dimensional {Gross{\textendash}Pitaevskii} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {1339--1350},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.799},
language = {en},
}
TY - JOUR AU - Michał Kowalczyk AU - Yvan Martel TI - A new proof of a Liouville theorem for the one dimensional Gross–Pitaevskii equation JO - Comptes Rendus. Mathématique PY - 2025 SP - 1339 EP - 1350 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.799 LA - en ID - CRMATH_2025__363_G12_1339_0 ER -
Michał Kowalczyk; Yvan Martel. A new proof of a Liouville theorem for the one dimensional Gross–Pitaevskii equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1339-1350. doi: 10.5802/crmath.799
[1] Asymptotic stability in the energy space for dark solitons of the Gross–Pitaevskii equation, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 6, pp. 1327-1381 | DOI | MR | Zbl | Numdam
[2] The Gross–Pitaevskii equation in the energy space, Stationary and time dependent Gross–Pitaevskii equations (Alberto Farina; Jean-Claude Saut, eds.) (Contemporary Mathematics), Volume 473, American Mathematical Society, 2008, pp. 129-148 | DOI | MR | Zbl
[3] Asymptotic stability of the black soliton for the Gross–Pitaevskii equation, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 2, pp. 305-353 | DOI | MR | Zbl
[4] Kink dynamics under odd perturbations for -scalar field models with one internal mode, Math. Res. Lett., Volume 31 (2024) no. 3, pp. 795-832 | DOI | MR | Zbl
[5] Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes, J. Eur. Math. Soc., Volume 24 (2022) no. 6, pp. 2133-2167 | DOI | MR | Zbl
[6] Asymptotic stability of solitary waves for the 1D cubic-quintic Schrödinger equation with no internal mode, Probab. Math. Phys., Volume 3 (2022) no. 4, pp. 839-867 | DOI | MR | Zbl
[7] Asymptotic stability of solitary waves for the 1D near-cubic non-linear Schrödinger equation in the absence of internal modes, Nonlinear Anal., Theory Methods Appl., Volume 241 (2024), 113474, 30 pages | DOI | MR | Zbl
[8] Korteweg–de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, 1756, Springer, 2001 | MR | Zbl
Cité par Sources :
Commentaires - Politique
