Comptes Rendus
Article de recherche - Equations aux dérivées partielles
Log-concavity and anti-maximum principles for semilinear and linear elliptic equations
[Log-concavité et principes d’anti-maximum pour des équations elliptiques linéaires et semi-linéaires]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1555-1574

Cet article fait partie du numéro thématique De génération en génération : l'héritage mathématique de Haïm Brezis coordonné par Henri Berestycki et al..  

This paper is concerned with existence and qualitative properties of positive solutions of semilinear elliptic equations in bounded domains with Dirichlet boundary conditions. We show the existence of positive solutions in the vicinity of the linear equation and the log-concavity of the solutions when the domain is strictly convex. We also review the standard results on the log-concavity or the more general quasi-concavity of solutions of elliptic equations. The existence and other convergence results especially rely on the maximum principle, on a quantified version of the anti-maximum principle, on the Schauder fixed point theorem, and on some a priori estimates.

Cet article porte sur des questions d’existence et des propriétés qualitatives de solutions strictement positives d’équations elliptiques semi-linéaires dans des domaines bornés avec des conditions au bord de type Dirichlet. Nous montrons l’existence de solutions strictement positives au voisinage d’une équation linéaire et la log-concavité des solutions lorsque le domaine est strictement convexe. Nous présentons également une synthèse des résultats classiques sur la log-concavité et sur la notion plus générale de quasi-concavité pour des équations elliptiques. L’existence de solutions et des résultats supplémentaires de convergence reposent notamment sur le principe du maximum, sur une version quantifiée du principe d’anti-maximum, sur le théorème de point fixe de Schauder, et sur des estimations a priori.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.810
Classification : 35A16, 35B20, 35B30, 35B50, 35J15, 35J61
Keywords: Semilinear elliptic equations, qualitative properties, log-concavity, anti-maximum principle
Mots-clés : Équations elliptiques semi-linéaires, propriétés qualitatives, log-concavité, principe d’anti-maximum

François Hamel 1 ; Nikolai Nadirashvili 1

1 Aix Marseille Univ, CNRS, I2M, Marseille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G13_1555_0,
     author = {Fran\c{c}ois Hamel and Nikolai Nadirashvili},
     title = {Log-concavity and anti-maximum principles for semilinear and linear elliptic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1555--1574},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.810},
     language = {en},
}
TY  - JOUR
AU  - François Hamel
AU  - Nikolai Nadirashvili
TI  - Log-concavity and anti-maximum principles for semilinear and linear elliptic equations
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1555
EP  - 1574
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.810
LA  - en
ID  - CRMATH_2025__363_G13_1555_0
ER  - 
%0 Journal Article
%A François Hamel
%A Nikolai Nadirashvili
%T Log-concavity and anti-maximum principles for semilinear and linear elliptic equations
%J Comptes Rendus. Mathématique
%D 2025
%P 1555-1574
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.810
%G en
%F CRMATH_2025__363_G13_1555_0
François Hamel; Nikolai Nadirashvili. Log-concavity and anti-maximum principles for semilinear and linear elliptic equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1555-1574. doi: 10.5802/crmath.810

[1] A. Acker; L. E. Payne; G. Philippin On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem, Z. Angew. Math. Phys., Volume 32 (1981), pp. 683-694 | DOI | MR | Zbl

[2] N. M. Almousa; C. Bucur; R. Cornale; M. Squassina Concavity principles for nonautonomous elliptic equations and applications, Asymptotic Anal., Volume 135 (2023), pp. 509-524 | DOI | MR | Zbl

[3] Nouf M. Almousa; Jacopo Assettini; Marco Gallo; Marco Squassina Concavity properties for quasilinear equations and optimality remarks, Differ. Integral Equ., Volume 37 (2024) no. 1–2, pp. 1-26 | DOI | MR | Zbl

[4] H. Amann Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., Volume 18 (1976), pp. 620-709 | DOI | MR | Zbl

[5] A. Ambrosetti; H. Brezis; G. Cerami Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543 | DOI | MR | Zbl

[6] David Arcoya; José L. Gámez Bifurcation theory and related problems: anti-maximum principle and resonance, Commun. Partial Differ. Equations, Volume 26 (2001) no. 9–10, pp. 1879-1911 | DOI | MR | Zbl

[7] José M. Arrieta; Rosa Pardo; Anibal Rodríguez-Bernal Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 2, pp. 225-252 | DOI | MR | Zbl

[8] José M. Arrieta; Rosa Pardo; Anibal Rodríguez-Bernal Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differ. Equations, Volume 246 (2009) no. 5, pp. 2055-2080 | DOI | MR | Zbl

[9] H. Berestycki Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal., Volume 40 (1981), pp. 1-29 | DOI | MR | Zbl

[10] H. Berestycki; L. Nirenberg; S. R. S. Varadhan The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Commun. Pure Appl. Math., Volume 47 (1994), pp. 47-92 | DOI | MR | Zbl

[11] I. Birindelli Hopf’s lemma and anti-maximum principle in general domains, J. Differ. Equations, Volume 119 (1995), pp. 450-472 | MR | DOI | Zbl

[12] Vladimir Bobkov; Pavel Drábek; Yavdat Ilyasov Estimates on the spectral interval of validity of the anti-maximum principle, J. Differ. Equations, Volume 269 (2020) no. 4, pp. 2956-2976 | DOI | MR | Zbl

[13] Vladimir Bobkov; Mieko Tanaka On the antimaximum principle for the p-Laplacian and its sublinear perturbations, SN Partial Differ. Equ. Appl., Volume 4 (2023) no. 3, 21, 38 pages | DOI | MR | Zbl

[14] W. Borrelli; S. Mosconi; M. Squassina Concavity properties for solutions to p-Laplace equations with concave nonlinearities, Adv. Calc. Var., Volume 17 (2024), pp. 79-97 | DOI | Zbl | MR

[15] H. J. Brascamp; E. H. Lieb On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976), pp. 366-389 | DOI | Zbl | MR

[16] H. Brezis; L. Oswald Remarks on sublinear elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 10 (1986), pp. 55-64 | DOI | MR | Zbl

[17] Haïm Brezis Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983 | MR | Zbl

[18] X. Cabré; S. Chanillo Stable solutions of semilinear elliptic problems in convex domains, Sel. Math., New Ser., Volume 4 (1998), pp. 1-10 | DOI | MR | Zbl

[19] L. A. Caffarelli; A. Friedman Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985), pp. 431-456 | MR | DOI | Zbl

[20] L. A. Caffarelli; J. Spruck Convexity properties of solutions to some classical variational problems, Commun. Partial Differ. Equations, Volume 7 (1982), pp. 1337-1379 | DOI | Zbl

[21] J. Campos; J. Mawhin; R. Ortega Maximum principles around an eigenvalue with constant eigenfunctions, Commun. Contemp. Math., Volume 10 (2008), pp. 1243-1259 | MR | DOI | Zbl

[22] Ph. Clément; L. A. Peletier An anti-maximum principle for second-order elliptic operators, J. Differ. Equations, Volume 34 (1979), pp. 218-229 | DOI | MR | Zbl

[23] Ph. Clément; G. Sweers Uniform anti-maximum principles, J. Differ. Equations, Volume 164 (2000), pp. 118-154 | MR | DOI | Zbl

[24] A. Colesanti; E. Francini; G. Livshyts; P. Salani The Brunn–Minkowski inequality for the first eigenvalue of the Ornstein–Uhlenbeck operator and log-concavity of the relevant eigenfunction (2024) | arXiv | Zbl

[25] A. Colesanti; L. Qin; P. Salani Geometric properties of solutions to elliptic PDE’s in Gauss space and related Brunn–Minkowski type inequalities (2025) | arXiv | Zbl

[26] Andrea Colesanti Log-concavity of the first Dirichlet eigenfunction of some elliptic differential operators and convexity inequalities for the relevant eigenvalue, Acta Math. Sci., Ser. B, Engl. Ed., Volume 45 (2025) no. 1, pp. 143-152 | DOI | MR | Zbl

[27] G. Crasta; I. Fragalà Concavity properties of solutions to Robin problems, Camb. J. Math., Volume 9 (2021), pp. 177-212 | DOI | MR | Zbl

[28] Colette De Coster; Patrick Habets Two-point boundary value problems: lower and upper solutions, Mathematics in Science and Engineering, 205, Elsevier, 2006 | MR | Zbl

[29] Colette De Coster; Marc Henrard Existence and localization of solution for second order elliptic BVP in presence of lower and upper solutions without any order, J. Differ. Equations, Volume 145 (1998) no. 2, pp. 420-452 | DOI | MR | Zbl

[30] Yihong Du Order structure and topological methods in nonlinear partial differential equations. Vol. 1: Maximum principles and applications, Series in Partial Differential Equations and Applications, 2, World Scientific, 2006 | DOI | MR | Zbl

[31] D. L. Finn Convexity of level curves for solutions to semilinear elliptic equations, Commun. Pure Appl. Anal., Volume 7 (2008), pp. 1335-1343 | DOI | MR | Zbl

[32] Jacqueline Fleckinger; Jean-Pierre Gossez; Peter Takáč; François de Thélin Existence, nonexistence et principe de l’antimaximum pour le p-laplacien, Comptes Rendus. Mathématique, Volume 321 (1995) no. 6, pp. 731-734 | MR | Zbl

[33] Jacqueline Fleckinger; Jesús Hernández; François de Thélin Estimate of the validity interval for the antimaximum principle and application to a non-cooperative system, Rostocker Math. Kolloq. (2014/15) no. 69, pp. 19-32 | MR | Zbl

[34] M. Gallo; S. Mosconi; M. Squassina Power law convergence and concavity for the logarithmic Schrödinger equation (2024) | arXiv | Zbl

[35] B. Gidas; W.-M. Ni; L. Nirenberg Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243 | DOI | Zbl

[36] F. Gladiali; M. Grossi Strict convexity of level sets of solutions of some nonlinear elliptic equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 134 (2004), pp. 363-373 | DOI | MR | Zbl

[37] J.-P. Gossez; P. Omari Non-ordered lower and upper solutions in semilinear elliptic problems, Commun. Partial Differ. Equations, Volume 19 (1994) no. 7–8, pp. 1163-1184 | DOI | MR | Zbl

[38] A. Greco; G. Porru Convexity of solutions to some elliptic partial differential equations, SIAM J. Math. Anal., Volume 24 (1993), pp. 833-839 | DOI | MR | Zbl

[39] Antonio Greco; Bernd Kawohl Log-concavity in some parabolic problems, Electron. J. Differ. Equ., Volume 1999 (1999), 19, 12 pages | Zbl

[40] Massimo Grossi On the number of critical points of solutions of semilinear elliptic equations, Electron. Res. Arch., Volume 29 (2021) no. 6, pp. 4215-4228 | DOI | MR | Zbl

[41] Patrick Habets; Pierpaolo Omari Existence and localization of solutions of second order elliptic problems using lower and upper solutions in the reversed order, Topol. Methods Nonlinear Anal., Volume 8 (1996) no. 1, pp. 25-56 | DOI | MR | Zbl

[42] F. Hamel; N. Nadirashvili; Y. Sire Convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples, Am. J. Math., Volume 138 (2016), pp. 499-527 | DOI | MR | Zbl

[43] P. Hess An anti-maximum principle for linear elliptic equations with an indefinite weight function, J. Differ. Equations, Volume 41 (1981), pp. 369-374 | DOI | MR | Zbl

[44] K. Ishige; P. Salani Is quasi-concavity preserved by heat flow?, Arch. Math., Volume 90 (2008), pp. 450-460 | DOI | Zbl

[45] K. Ishige; P. Salani; A. Takatsu Characterization of F-concavity preserved by the Dirichlet heat flow, Trans. Am. Math. Soc., Volume 377 (2024), pp. 5705-5748 | MR | Zbl

[46] Kazuhiro Ishige; Paolo Salani; Asuka Takatsu To logconcavity and beyond, Commun. Contemp. Math., Volume 22 (2020) no. 2, 1950009, 17 pages | DOI | MR | Zbl

[47] B. Kawohl When are solutions to nonlinear elliptic boundary value problems convex?, Commun. Partial Differ. Equations, Volume 10 (1985), pp. 1213-1225 | DOI | MR | Zbl

[48] B. Kawohl A remark on N. Korevaar’s concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem, Math. Methods Appl. Sci., Volume 8 (1986), pp. 93-101 | DOI | Zbl

[49] Bernd Kawohl Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, 1150, Springer, 1985 | DOI | MR | Zbl

[50] G. Keady The power concavity of solutions of some semilinear elliptic boundary-value problems, Bull. Aust. Math. Soc., Volume 31 (1985), pp. 181-184 | DOI | MR | Zbl

[51] A. U. Kennington Power concavity and boundary value problems, Indiana Univ. Math. J., Volume 34 (1985), pp. 687-704 | DOI | MR | Zbl

[52] A. V. Koleshnikov On diffusion semigroups preserving the log-concavity, J. Funct. Anal., Volume 186 (2001), pp. 196-205 | DOI | MR | Zbl

[53] N. J. Korevaar Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., Volume 32 (1983), pp. 603-614 | DOI | MR | Zbl

[54] N. J. Korevaar; J. L. Lewis Convex solutions of certain elliptic equations have constant rank Hessians, Arch. Ration. Mech. Anal., Volume 97 (1987), pp. 19-32 | DOI | Zbl

[55] P. Korman Exact multiplicity of solutions for some semilinear Dirichlet problems, Appl. Anal., Volume 98 (2019), pp. 1483-1495 | DOI | MR | Zbl

[56] Philip Korman Monotone approximations of unstable solutions, J. Comput. Appl. Math., Volume 136 (2001) no. 1–2, pp. 309-315 | DOI | MR | Zbl

[57] M. Kühn Power- and log-concavity of viscosity solutions to some elliptic Dirichlet problems, Commun. Pure Appl. Anal., Volume 17 (2018), pp. 2773-2788 | DOI | MR | Zbl

[58] E. M. Landesman; A. C. Lazer Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., Volume 19 (1969/70), pp. 609-623 | MR | Zbl

[59] K.-A. Lee; J. L. Vázquez Parabolic approach to nonlinear elliptic eigenvalue problems, Adv. Math., Volume 219 (2008), pp. 2006-2028 | DOI | MR | Zbl

[60] C.-S. Lin Uniqueness of least energy solutions to a semilinear elliptic equations in 2 , Manuscr. Math., Volume 84 (1994), pp. 13-19 | DOI | MR | Zbl

[61] P.-L. Lions Two geometrical properties of solutions of semilinear problems, Appl. Anal., Volume 12 (1981), pp. 267-272 | MR | DOI | Zbl

[62] L. G. Makar-Limanov The solution of the Dirichlet problem for the equation Δu=-1 in a convex region, Mat. Zametki, Volume 9 (1971), pp. 89-92 | MR | Zbl

[63] Y. Pinchover Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann., Volume 314 (1999), pp. 555-590 | DOI | MR | Zbl

[64] Murray H. Protter; Hans F. Weinberger Maximum principles in differential equations, Prentice Hall, 1967 | MR

[65] W. Reichel Sharp parameter ranges in the uniform anti-maximum principle for second-order ordinary differential operators, Z. Angew. Math. Phys., Volume 54 (2003), pp. 822-838 | DOI | MR | Zbl

[66] M. C. M. Rezende; P. M. Sánchez-Aguilar; E. A. B. Silva A Landesman-Lazer local condition for semilinear elliptic problems, Bull. Braz. Math. Soc. (N.S.), Volume 50 (2019) no. 4, pp. 889-911 | DOI | MR | Zbl

[67] S. Sakaguchi Concavity properties of solutions to some degenerate elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (1987), pp. 403-421 | Numdam | MR | Zbl

[68] D. H. Sattinger Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., Volume 21 (1971/72), pp. 979-1000 | DOI | MR | Zbl

[69] J. Shi A new proof of anti-maximum principle via a bifurcation approach, Results Math., Volume 48 (2005), pp. 162-167 | DOI | Zbl

[70] S. Steinerberger On concavity of solutions of the nonlinear Poisson equation, Arch. Ration. Mech. Anal., Volume 242 (2022), pp. 209-224 | DOI | Zbl

[71] G. Sweers L N is sharp for the anti-maximum principle, J. Differ. Equations, Volume 134 (1997), pp. 148-153 | DOI | MR | Zbl

[72] P. Takáč An abstract form of maximum and anti-maximum principles of Hopf’s type, J. Math. Anal. Appl., Volume 201 (1996), pp. 339-364 | DOI | Zbl

[73] L. Xu A microscopic convexity theorem of level sets for solutions to elliptic equations, Calc. Var. Partial Differ. Equ., Volume 40 (2011), pp. 51-63 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique