[Log-concavité et principes d’anti-maximum pour des équations elliptiques linéaires et semi-linéaires]
This paper is concerned with existence and qualitative properties of positive solutions of semilinear elliptic equations in bounded domains with Dirichlet boundary conditions. We show the existence of positive solutions in the vicinity of the linear equation and the log-concavity of the solutions when the domain is strictly convex. We also review the standard results on the log-concavity or the more general quasi-concavity of solutions of elliptic equations. The existence and other convergence results especially rely on the maximum principle, on a quantified version of the anti-maximum principle, on the Schauder fixed point theorem, and on some a priori estimates.
Cet article porte sur des questions d’existence et des propriétés qualitatives de solutions strictement positives d’équations elliptiques semi-linéaires dans des domaines bornés avec des conditions au bord de type Dirichlet. Nous montrons l’existence de solutions strictement positives au voisinage d’une équation linéaire et la log-concavité des solutions lorsque le domaine est strictement convexe. Nous présentons également une synthèse des résultats classiques sur la log-concavité et sur la notion plus générale de quasi-concavité pour des équations elliptiques. L’existence de solutions et des résultats supplémentaires de convergence reposent notamment sur le principe du maximum, sur une version quantifiée du principe d’anti-maximum, sur le théorème de point fixe de Schauder, et sur des estimations a priori.
Révisé le :
Accepté le :
Publié le :
Keywords: Semilinear elliptic equations, qualitative properties, log-concavity, anti-maximum principle
Mots-clés : Équations elliptiques semi-linéaires, propriétés qualitatives, log-concavité, principe d’anti-maximum
François Hamel 1 ; Nikolai Nadirashvili 1
CC-BY 4.0
@article{CRMATH_2025__363_G13_1555_0,
author = {Fran\c{c}ois Hamel and Nikolai Nadirashvili},
title = {Log-concavity and anti-maximum principles for semilinear and linear elliptic equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {1555--1574},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.810},
language = {en},
}
TY - JOUR AU - François Hamel AU - Nikolai Nadirashvili TI - Log-concavity and anti-maximum principles for semilinear and linear elliptic equations JO - Comptes Rendus. Mathématique PY - 2025 SP - 1555 EP - 1574 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.810 LA - en ID - CRMATH_2025__363_G13_1555_0 ER -
%0 Journal Article %A François Hamel %A Nikolai Nadirashvili %T Log-concavity and anti-maximum principles for semilinear and linear elliptic equations %J Comptes Rendus. Mathématique %D 2025 %P 1555-1574 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.810 %G en %F CRMATH_2025__363_G13_1555_0
François Hamel; Nikolai Nadirashvili. Log-concavity and anti-maximum principles for semilinear and linear elliptic equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1555-1574. doi: 10.5802/crmath.810
[1] On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem, Z. Angew. Math. Phys., Volume 32 (1981), pp. 683-694 | DOI | MR | Zbl
[2] Concavity principles for nonautonomous elliptic equations and applications, Asymptotic Anal., Volume 135 (2023), pp. 509-524 | DOI | MR | Zbl
[3] Concavity properties for quasilinear equations and optimality remarks, Differ. Integral Equ., Volume 37 (2024) no. 1–2, pp. 1-26 | DOI | MR | Zbl
[4] Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., Volume 18 (1976), pp. 620-709 | DOI | MR | Zbl
[5] Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., Volume 122 (1994), pp. 519-543 | DOI | MR | Zbl
[6] Bifurcation theory and related problems: anti-maximum principle and resonance, Commun. Partial Differ. Equations, Volume 26 (2001) no. 9–10, pp. 1879-1911 | DOI | MR | Zbl
[7] Bifurcation and stability of equilibria with asymptotically linear boundary conditions at infinity, Proc. R. Soc. Edinb., Sect. A, Math., Volume 137 (2007) no. 2, pp. 225-252 | DOI | MR | Zbl
[8] Equilibria and global dynamics of a problem with bifurcation from infinity, J. Differ. Equations, Volume 246 (2009) no. 5, pp. 2055-2080 | DOI | MR | Zbl
[9] Le nombre de solutions de certains problèmes semi-linéaires elliptiques, J. Funct. Anal., Volume 40 (1981), pp. 1-29 | DOI | MR | Zbl
[10] The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Commun. Pure Appl. Math., Volume 47 (1994), pp. 47-92 | DOI | MR | Zbl
[11] Hopf’s lemma and anti-maximum principle in general domains, J. Differ. Equations, Volume 119 (1995), pp. 450-472 | MR | DOI | Zbl
[12] Estimates on the spectral interval of validity of the anti-maximum principle, J. Differ. Equations, Volume 269 (2020) no. 4, pp. 2956-2976 | DOI | MR | Zbl
[13] On the antimaximum principle for the -Laplacian and its sublinear perturbations, SN Partial Differ. Equ. Appl., Volume 4 (2023) no. 3, 21, 38 pages | DOI | MR | Zbl
[14] Concavity properties for solutions to -Laplace equations with concave nonlinearities, Adv. Calc. Var., Volume 17 (2024), pp. 79-97 | DOI | Zbl | MR
[15] On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976), pp. 366-389 | DOI | Zbl | MR
[16] Remarks on sublinear elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 10 (1986), pp. 55-64 | DOI | MR | Zbl
[17] Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983 | MR | Zbl
[18] Stable solutions of semilinear elliptic problems in convex domains, Sel. Math., New Ser., Volume 4 (1998), pp. 1-10 | DOI | MR | Zbl
[19] Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985), pp. 431-456 | MR | DOI | Zbl
[20] Convexity properties of solutions to some classical variational problems, Commun. Partial Differ. Equations, Volume 7 (1982), pp. 1337-1379 | DOI | Zbl
[21] Maximum principles around an eigenvalue with constant eigenfunctions, Commun. Contemp. Math., Volume 10 (2008), pp. 1243-1259 | MR | DOI | Zbl
[22] An anti-maximum principle for second-order elliptic operators, J. Differ. Equations, Volume 34 (1979), pp. 218-229 | DOI | MR | Zbl
[23] Uniform anti-maximum principles, J. Differ. Equations, Volume 164 (2000), pp. 118-154 | MR | DOI | Zbl
[24] The Brunn–Minkowski inequality for the first eigenvalue of the Ornstein–Uhlenbeck operator and log-concavity of the relevant eigenfunction (2024) | arXiv | Zbl
[25] Geometric properties of solutions to elliptic PDE’s in Gauss space and related Brunn–Minkowski type inequalities (2025) | arXiv | Zbl
[26] Log-concavity of the first Dirichlet eigenfunction of some elliptic differential operators and convexity inequalities for the relevant eigenvalue, Acta Math. Sci., Ser. B, Engl. Ed., Volume 45 (2025) no. 1, pp. 143-152 | DOI | MR | Zbl
[27] Concavity properties of solutions to Robin problems, Camb. J. Math., Volume 9 (2021), pp. 177-212 | DOI | MR | Zbl
[28] Two-point boundary value problems: lower and upper solutions, Mathematics in Science and Engineering, 205, Elsevier, 2006 | MR | Zbl
[29] Existence and localization of solution for second order elliptic BVP in presence of lower and upper solutions without any order, J. Differ. Equations, Volume 145 (1998) no. 2, pp. 420-452 | DOI | MR | Zbl
[30] Order structure and topological methods in nonlinear partial differential equations. Vol. 1: Maximum principles and applications, Series in Partial Differential Equations and Applications, 2, World Scientific, 2006 | DOI | MR | Zbl
[31] Convexity of level curves for solutions to semilinear elliptic equations, Commun. Pure Appl. Anal., Volume 7 (2008), pp. 1335-1343 | DOI | MR | Zbl
[32] Existence, nonexistence et principe de l’antimaximum pour le -laplacien, Comptes Rendus. Mathématique, Volume 321 (1995) no. 6, pp. 731-734 | MR | Zbl
[33] Estimate of the validity interval for the antimaximum principle and application to a non-cooperative system, Rostocker Math. Kolloq. (2014/15) no. 69, pp. 19-32 | MR | Zbl
[34] Power law convergence and concavity for the logarithmic Schrödinger equation (2024) | arXiv | Zbl
[35] Symmetry and related properties via the maximum principle, Commun. Math. Phys., Volume 68 (1979), pp. 209-243 | DOI | Zbl
[36] Strict convexity of level sets of solutions of some nonlinear elliptic equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 134 (2004), pp. 363-373 | DOI | MR | Zbl
[37] Non-ordered lower and upper solutions in semilinear elliptic problems, Commun. Partial Differ. Equations, Volume 19 (1994) no. 7–8, pp. 1163-1184 | DOI | MR | Zbl
[38] Convexity of solutions to some elliptic partial differential equations, SIAM J. Math. Anal., Volume 24 (1993), pp. 833-839 | DOI | MR | Zbl
[39] Log-concavity in some parabolic problems, Electron. J. Differ. Equ., Volume 1999 (1999), 19, 12 pages | Zbl
[40] On the number of critical points of solutions of semilinear elliptic equations, Electron. Res. Arch., Volume 29 (2021) no. 6, pp. 4215-4228 | DOI | MR | Zbl
[41] Existence and localization of solutions of second order elliptic problems using lower and upper solutions in the reversed order, Topol. Methods Nonlinear Anal., Volume 8 (1996) no. 1, pp. 25-56 | DOI | MR | Zbl
[42] Convexity of level sets for elliptic problems in convex domains or convex rings: two counterexamples, Am. J. Math., Volume 138 (2016), pp. 499-527 | DOI | MR | Zbl
[43] An anti-maximum principle for linear elliptic equations with an indefinite weight function, J. Differ. Equations, Volume 41 (1981), pp. 369-374 | DOI | MR | Zbl
[44] Is quasi-concavity preserved by heat flow?, Arch. Math., Volume 90 (2008), pp. 450-460 | DOI | Zbl
[45] Characterization of -concavity preserved by the Dirichlet heat flow, Trans. Am. Math. Soc., Volume 377 (2024), pp. 5705-5748 | MR | Zbl
[46] To logconcavity and beyond, Commun. Contemp. Math., Volume 22 (2020) no. 2, 1950009, 17 pages | DOI | MR | Zbl
[47] When are solutions to nonlinear elliptic boundary value problems convex?, Commun. Partial Differ. Equations, Volume 10 (1985), pp. 1213-1225 | DOI | MR | Zbl
[48] A remark on N. Korevaar’s concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem, Math. Methods Appl. Sci., Volume 8 (1986), pp. 93-101 | DOI | Zbl
[49] Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, 1150, Springer, 1985 | DOI | MR | Zbl
[50] The power concavity of solutions of some semilinear elliptic boundary-value problems, Bull. Aust. Math. Soc., Volume 31 (1985), pp. 181-184 | DOI | MR | Zbl
[51] Power concavity and boundary value problems, Indiana Univ. Math. J., Volume 34 (1985), pp. 687-704 | DOI | MR | Zbl
[52] On diffusion semigroups preserving the log-concavity, J. Funct. Anal., Volume 186 (2001), pp. 196-205 | DOI | MR | Zbl
[53] Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., Volume 32 (1983), pp. 603-614 | DOI | MR | Zbl
[54] Convex solutions of certain elliptic equations have constant rank Hessians, Arch. Ration. Mech. Anal., Volume 97 (1987), pp. 19-32 | DOI | Zbl
[55] Exact multiplicity of solutions for some semilinear Dirichlet problems, Appl. Anal., Volume 98 (2019), pp. 1483-1495 | DOI | MR | Zbl
[56] Monotone approximations of unstable solutions, J. Comput. Appl. Math., Volume 136 (2001) no. 1–2, pp. 309-315 | DOI | MR | Zbl
[57] Power- and log-concavity of viscosity solutions to some elliptic Dirichlet problems, Commun. Pure Appl. Anal., Volume 17 (2018), pp. 2773-2788 | DOI | MR | Zbl
[58] Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech., Volume 19 (1969/70), pp. 609-623 | MR | Zbl
[59] Parabolic approach to nonlinear elliptic eigenvalue problems, Adv. Math., Volume 219 (2008), pp. 2006-2028 | DOI | MR | Zbl
[60] Uniqueness of least energy solutions to a semilinear elliptic equations in , Manuscr. Math., Volume 84 (1994), pp. 13-19 | DOI | MR | Zbl
[61] Two geometrical properties of solutions of semilinear problems, Appl. Anal., Volume 12 (1981), pp. 267-272 | MR | DOI | Zbl
[62] The solution of the Dirichlet problem for the equation in a convex region, Mat. Zametki, Volume 9 (1971), pp. 89-92 | MR | Zbl
[63] Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann., Volume 314 (1999), pp. 555-590 | DOI | MR | Zbl
[64] Maximum principles in differential equations, Prentice Hall, 1967 | MR
[65] Sharp parameter ranges in the uniform anti-maximum principle for second-order ordinary differential operators, Z. Angew. Math. Phys., Volume 54 (2003), pp. 822-838 | DOI | MR | Zbl
[66] A Landesman-Lazer local condition for semilinear elliptic problems, Bull. Braz. Math. Soc. (N.S.), Volume 50 (2019) no. 4, pp. 889-911 | DOI | MR | Zbl
[67] Concavity properties of solutions to some degenerate elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (1987), pp. 403-421 | Numdam | MR | Zbl
[68] Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., Volume 21 (1971/72), pp. 979-1000 | DOI | MR | Zbl
[69] A new proof of anti-maximum principle via a bifurcation approach, Results Math., Volume 48 (2005), pp. 162-167 | DOI | Zbl
[70] On concavity of solutions of the nonlinear Poisson equation, Arch. Ration. Mech. Anal., Volume 242 (2022), pp. 209-224 | DOI | Zbl
[71] is sharp for the anti-maximum principle, J. Differ. Equations, Volume 134 (1997), pp. 148-153 | DOI | MR | Zbl
[72] An abstract form of maximum and anti-maximum principles of Hopf’s type, J. Math. Anal. Appl., Volume 201 (1996), pp. 339-364 | DOI | Zbl
[73] A microscopic convexity theorem of level sets for solutions to elliptic equations, Calc. Var. Partial Differ. Equ., Volume 40 (2011), pp. 51-63 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
