Comptes Rendus
Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer
[Comportement asymptotique à l'infini d'un problème de Neumann dans une couche perforée]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 85-90.

On considère un problème de Neumann dans un domaine Ω, qui coincide avec une couche périodique excepté sur une partie compacte. On démontre que l'opérateur correspondant satisfait à la propriété de Fredholm dans des espaces de Sobolev avec poids et on détermine son noyau et son conoyau. Tous ces résultats sont déduits de la représentation asymptotique des solutions à l'infini.

The Neumann problem is considered in a domain Ω, which can differ from a periodic layer inside a compact set. We prove the Fredholm property of the corresponding operator in step-weighted Sobolev spaces and determine its kernel and cokernel. All these results are based on the obtained asymptotic representation of solutions at infinity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)00005-0
Keywords: Computational solid mechanics, Periodic layer, Homogenization procedure, Asymptotic behaviour, Step-weighted spaces
Mot clés : Mécanique des solides numérique, Couche périodique, Processus d'homogénéisation, Comportement asymptotique, Espaces avec poids

Sergueı̈ A. Nazarov 1 ; Gudrun Thäter 2

1 Inst. of Mechanical Engineering Problems, V. O. Bol'shoı̈ pr. 61, St. Petersburg, 199178, Russia
2 Institut für Angewandte Mathematik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
@article{CRMECA_2003__331_1_85_0,
     author = {Sergue{\i}\ensuremath{\ddot{}} A. Nazarov and Gudrun Th\"ater},
     title = {Asymptotics at infinity of solutions to the {Neumann} problem in a sieve-type layer},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {85--90},
     publisher = {Elsevier},
     volume = {331},
     number = {1},
     year = {2003},
     doi = {10.1016/S1631-0721(02)00005-0},
     language = {en},
}
TY  - JOUR
AU  - Sergueı̈ A. Nazarov
AU  - Gudrun Thäter
TI  - Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 85
EP  - 90
VL  - 331
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)00005-0
LA  - en
ID  - CRMECA_2003__331_1_85_0
ER  - 
%0 Journal Article
%A Sergueı̈ A. Nazarov
%A Gudrun Thäter
%T Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer
%J Comptes Rendus. Mécanique
%D 2003
%P 85-90
%V 331
%N 1
%I Elsevier
%R 10.1016/S1631-0721(02)00005-0
%G en
%F CRMECA_2003__331_1_85_0
Sergueı̈ A. Nazarov; Gudrun Thäter. Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 85-90. doi : 10.1016/S1631-0721(02)00005-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00005-0/

[1] P.G. Ciarlet Plates and Junctions in Elastic Multi-Structures. An Asymptotic Analysis, Masson, Paris, 1990

[2] D. Leguillon; É. Sanchez-Palencia Approximation of a two dimensional problem of junctions, Comput. Mech., Volume 6 (1990), pp. 435-455

[3] S.A. Nazarov; B.A. Plamenevski Asymptotics of the spectrum of the Neumann problem in singularly perturbed thin domains, Leningr. Math. J., Volume 2 (1991), pp. 287-311

[4] V.A. Kozlov; V.G. Mazya; A.B. Movchan Asymptotic analysis of a mixed boundary value problem in a multi-structure, Asymptotic Anal., Volume 8 (1994), pp. 105-143

[5] S.A. Nazarov Junctions of singularly degenerating domains with different limit dimensions. 1 & 2, Trudy Sem. Petrovsk., Volume 18 (1995), pp. 3-78 and 20 (1997) 155–195

[6] S.A. Nazarov Asymptotics of the solution to a boundary value problem in a thin cylinder with nonsmooth lateral surface, Math. Izvestiya, Volume 42 (1994), pp. 183-217

[7] S.A. Nazarov Asymptotic expansions at infinity of solutions to the elasticity theory problem in a layer, Trudy Moskov. Mat. Obschch., Volume 60 (1998), pp. 3-97

[8] S.A. Nazarov; K.I. Pileckas The asymptotic properties of the solution to the Stokes problem in domains that are layer-like at infinity, J. Math. Fluid Mech., Volume 1 (1999), pp. 131-167

[9] S.A. Nazarov Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain, Russian J. Math. Phys., Volume 3 (1995), pp. 297-326

[10] É. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin, 1980

[11] N.S. Bakhvalov; G. Panasenko Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Kluwer Academic, Dordrecht, 1989

[12] S.A. Nazarov Vishik–Lyusternik method for elliptic boundary-value problems in regions with conical points. 1. The problem in a cone, Siberian Math. J., Volume 22 (1982), pp. 594-611

[13] V.A. Kondratiev Boundary problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., Volume 16 (1967), pp. 227-313

Cité par Sources :

Commentaires - Politique