The Neumann problem is considered in a domain , which can differ from a periodic layer inside a compact set. We prove the Fredholm property of the corresponding operator in step-weighted Sobolev spaces and determine its kernel and cokernel. All these results are based on the obtained asymptotic representation of solutions at infinity.
On considère un problème de Neumann dans un domaine , qui coincide avec une couche périodique excepté sur une partie compacte. On démontre que l'opérateur correspondant satisfait à la propriété de Fredholm dans des espaces de Sobolev avec poids et on détermine son noyau et son conoyau. Tous ces résultats sont déduits de la représentation asymptotique des solutions à l'infini.
Accepted:
Published online:
Mots-clés : Mécanique des solides numérique, Couche périodique, Processus d'homogénéisation, Comportement asymptotique, Espaces avec poids
Sergueı̈ A. Nazarov 1; Gudrun Thäter 2
@article{CRMECA_2003__331_1_85_0, author = {Sergue{\i}\ensuremath{\ddot{}} A. Nazarov and Gudrun Th\"ater}, title = {Asymptotics at infinity of solutions to the {Neumann} problem in a sieve-type layer}, journal = {Comptes Rendus. M\'ecanique}, pages = {85--90}, publisher = {Elsevier}, volume = {331}, number = {1}, year = {2003}, doi = {10.1016/S1631-0721(02)00005-0}, language = {en}, }
TY - JOUR AU - Sergueı̈ A. Nazarov AU - Gudrun Thäter TI - Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer JO - Comptes Rendus. Mécanique PY - 2003 SP - 85 EP - 90 VL - 331 IS - 1 PB - Elsevier DO - 10.1016/S1631-0721(02)00005-0 LA - en ID - CRMECA_2003__331_1_85_0 ER -
Sergueı̈ A. Nazarov; Gudrun Thäter. Asymptotics at infinity of solutions to the Neumann problem in a sieve-type layer. Comptes Rendus. Mécanique, Volume 331 (2003) no. 1, pp. 85-90. doi : 10.1016/S1631-0721(02)00005-0. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00005-0/
[1] Plates and Junctions in Elastic Multi-Structures. An Asymptotic Analysis, Masson, Paris, 1990
[2] Approximation of a two dimensional problem of junctions, Comput. Mech., Volume 6 (1990), pp. 435-455
[3] Asymptotics of the spectrum of the Neumann problem in singularly perturbed thin domains, Leningr. Math. J., Volume 2 (1991), pp. 287-311
[4] Asymptotic analysis of a mixed boundary value problem in a multi-structure, Asymptotic Anal., Volume 8 (1994), pp. 105-143
[5] Junctions of singularly degenerating domains with different limit dimensions. 1 & 2, Trudy Sem. Petrovsk., Volume 18 (1995), pp. 3-78 and 20 (1997) 155–195
[6] Asymptotics of the solution to a boundary value problem in a thin cylinder with nonsmooth lateral surface, Math. Izvestiya, Volume 42 (1994), pp. 183-217
[7] Asymptotic expansions at infinity of solutions to the elasticity theory problem in a layer, Trudy Moskov. Mat. Obschch., Volume 60 (1998), pp. 3-97
[8] The asymptotic properties of the solution to the Stokes problem in domains that are layer-like at infinity, J. Math. Fluid Mech., Volume 1 (1999), pp. 131-167
[9] Asymptotics at infinity of the solution to the Dirichlet problem for a system of equations with periodic coefficients in an angular domain, Russian J. Math. Phys., Volume 3 (1995), pp. 297-326
[10] Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin, 1980
[11] Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Kluwer Academic, Dordrecht, 1989
[12] Vishik–Lyusternik method for elliptic boundary-value problems in regions with conical points. 1. The problem in a cone, Siberian Math. J., Volume 22 (1982), pp. 594-611
[13] Boundary problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., Volume 16 (1967), pp. 227-313
Cited by Sources:
Comments - Policy