Un mouvement isochore sera réalisable conjointement en fluide parfait, en fluide newtonien, en fluide de Maxwell (à faible vitesse) et en fluide de Rivlin–Ericksen de second grade quels que soient la viscosité et les coefficients viscométriques, si (et seulement si) il est premier. Tout mouvement premier à tourbillon stationnaire est vissé généralisé, et satisfait l'équation de Stokes. Si la vitesse d'un mouvement premier vérifie , le mouvement devient réalisable dans tous les fluides viscoélastiques du second ordre. Fratrie des écoulements potentiels, ces divers ensembles de mouvements premiers sont scannés parallèlement aux écoulements potentiels : ce sont des faisceaux d'espaces conoı̈des de dimensions variées, finies et infinies, issus du repos .
An isochoric motion can be performed both in perfect fluid, in Newtonian fluid, in Maxwell fluid (slow motions) and in Rivlin–Ericksen fluid of second grade whatever be viscosities and viscometric coefficients, iff the motion is universal. Every universal motion with steady vorticity is a generalised Belrami flow, and fulfils the Stokes equation. If the velocity of an universal motion complies with , the motion stands for feasible motion in every second order fluid. Brothers of the potential flows, all the sets of universal motions make up bundles of linear or conoı̈d spaces with various dimensions, finite or infinite, issued from the rest . The structures appear by scanning parallel to the potential flows.
Révisé le :
Publié le :
Keywords: Fluid mechanics, Vorticity in simple fluids, Couette flow, Poiseuille flow, Strakhovitch flow, Dunn–Fosdick–Rajagopal hypothesis
Michel Bouthier 1
@article{CRMECA_2003__331_2_165_0, author = {Michel Bouthier}, title = {Espaces d'\'ecoulements dits {\guillemotleft} universels {\guillemotright}}, journal = {Comptes Rendus. M\'ecanique}, pages = {165--172}, publisher = {Elsevier}, volume = {331}, number = {2}, year = {2003}, doi = {10.1016/S1631-0721(02)00011-6}, language = {fr}, }
Michel Bouthier. Espaces d'écoulements dits « universels ». Comptes Rendus. Mécanique, Volume 331 (2003) no. 2, pp. 165-172. doi : 10.1016/S1631-0721(02)00011-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)00011-6/
[1] Exact solutions of the unsteady Navier–Stokes equations, Appl. Mech. Rev. (2), Volume 42 (1989) no. 11, pp. 269-282
[2] Intégration des équations du mouvement d'un fluide visqueux incompressible, Handbuch der Physik, Vol. 8, Part 2, Springer, Berlin, 1963, pp. 1-384 Mouvements à tourbillon constant, Section 16, p. 39; Mouvements potentiels perturbés, Section 19, p. 45; Mouvements où D2Ψ=Kr2, lignes 25–26, Section 21β, p. 53; Mouvements où D2Ψ=f(r), écoulement de Strakhovitch, écoulement autour d'un paraboloı̈de, Section 21γ, p. 55
[3] Exact solutions of the Navier–Stokes equations – the generalized Beltrami flows, review and extension, Acta Mech., Volume 81 (1990), pp. 60-74
[4] Addendum: On complex-lamellar motions, Arch. Rational Mech. Anal., Volume 64 (1977), pp. 371-379 (Third part of main theorem, p. 372)
[5] Ann. Rev. Fluid Mech., 6 (1974), pp. 111-146 (Yin and Pipkin's theorems. Universal flows, pp. 129–130)
[6] Mathematical principles of classical fluid mechanics (S. Flugge; C. Truesdell, eds.), Handbuch der Physik, Vol. 8, Part. 1, Springer-Verlag, Berlin, 1959 (Sections 75–76, pp. 258–261)
[7] A class of exact solutions of the Navier–Stokes equations. Plane unsteady flow, Lett. Appl. Engrg. Sci., Volume 21 (1983) no. 2, pp. 179-186
[8] Circulation-preserving plane flows of incompressible viscous fluids, Arch. Rational Mech. Anal., Volume 83 (1983), pp. 169-194
[9] Vorticity in plane parallel, axially symmetrical or spherical flows of viscous fluid, Appl. Sci. Res., Volume 50 (1993), pp. 1-27
[10] Extension of Bernoulli's theorem on steady flows of inviscid fluids to steady flows of plastic solids, C. R. Acad. Sci. Paris Sér. IIb, Volume 328 (2000), pp. 835-840
[11] The Kinematics of Vorticity, Bloomington, 1954 (pp. 72–76)
[12] Über exakte Lösungen der Stokes–Navier-Gleichungen inkompressibler Flüssigkeiten bei veränderten Grenzbedingungen, Z. Angew. Math. Phys., Volume 3 (1952), pp. 259-271
[13] Über die Potentialströmungen zäher Flüssigkeiten, Z. Angew. Math. Mech., Volume 21 (1941), pp. 129-139
[14] Some simple analytic solutions of the Navier–Stokes équations, Int. J. Engrg. Sci., Volume 29 (1991) no. 1, pp. 55-68
[15] Rheometry, Chapman and Hall, London, 1975 Eqs. (2.11), p. 13, (6.29), p. 130
[16] Helical flow of a simple fluid between eccentric cylinders, Int. J. Non-Linear Mech., Volume 28 (1993) no. 2, pp. 221-235 Introduction de l'Éq. (8), p. 223
Cité par Sources :
Commentaires - Politique