A suffisamment haut nombre capillaire Ca, une ligne de contact dynamique qui recule sur une surface partiellement mouillante prend une forme anguleuse. Nous montrons que l'écoulement dans le « coin » liquide correspond à une solution de similarité des équations de la lubrification gouvernant les films minces, dans laquelle l'interface peut être assimilée à un cône. La pente
In conditions of partial wetting and at sufficiently high capillary number Ca, a dynamic contact line that recedes on a solid surface assumes a ‘saw-tooth’ shape. We show that the flow inside this liquid ‘corner’ is a similarity solution of the lubrication equations governing steady thin-film flows in which the free surface is cone shaped. The interface slope
Révisé le :
Publié le :
Keywords: wetting, dewetting, contact lines, film flows, singularities, lubrication theory
Howard A. Stone 1 ; Laurent Limat 2 ; Stephen K. Wilson 3 ; J.-M. Flesselles 2 ; Thomas Podgorski 2
@article{CRPHYS_2002__3_1_103_0, author = {Howard A. Stone and Laurent Limat and Stephen K. Wilson and J.-M. Flesselles and Thomas Podgorski}, title = {Singularit\'e anguleuse d'une ligne de contact en mouvement sur un substrat solide}, journal = {Comptes Rendus. Physique}, pages = {103--110}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01288-4}, language = {fr}, }
TY - JOUR AU - Howard A. Stone AU - Laurent Limat AU - Stephen K. Wilson AU - J.-M. Flesselles AU - Thomas Podgorski TI - Singularité anguleuse d'une ligne de contact en mouvement sur un substrat solide JO - Comptes Rendus. Physique PY - 2002 SP - 103 EP - 110 VL - 3 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(02)01288-4 LA - fr ID - CRPHYS_2002__3_1_103_0 ER -
%0 Journal Article %A Howard A. Stone %A Laurent Limat %A Stephen K. Wilson %A J.-M. Flesselles %A Thomas Podgorski %T Singularité anguleuse d'une ligne de contact en mouvement sur un substrat solide %J Comptes Rendus. Physique %D 2002 %P 103-110 %V 3 %N 1 %I Elsevier %R 10.1016/S1631-0705(02)01288-4 %G fr %F CRPHYS_2002__3_1_103_0
Howard A. Stone; Laurent Limat; Stephen K. Wilson; J.-M. Flesselles; Thomas Podgorski. Singularité anguleuse d'une ligne de contact en mouvement sur un substrat solide. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 103-110. doi : 10.1016/S1631-0705(02)01288-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01288-4/
[1] Corners, cusps and pearls in running drops, Phys. Rev. Lett., Volume 87 (2001), p. 036102.1-036102.4
[2] T. Podgorski, Ruissellement en situation de mouillage partiel, Thèse de Doctorat de l'Université Paris 6, 2000
[3] A maximum speed of wetting, Nature, Volume 282 (1979), pp. 489-491
[4] An experimental study of air entrainment at a solid/liquid/gas interface, Chem. Eng. Sci., Volume 31 (1976), pp. 901-911
[5] Liquid Film Coating (S.F. Kistler; P.M. Schweizer, eds.), Wetting: static and dynamic contact lines, Liquid Film Coating, Chapman and Hall, London, 1997, pp. 63-97
[6] Deposition of Langmuir–Blodgett layers, Coll. Polym. Sci., Volume 264 (1986), pp. 463-465
[7] Hydrodynamics of wetting, Fluid Dynamics, Volume 11 (1976), pp. 714-721
[8] The dynamics of spreading of liquids on a solid surface–Part 1: Viscous flow, J. Fluid Mech., Volume 168 (1986), pp. 169-194
[9] A two-dimensional similarity solution for capillary driven flows, Physica D, Volume 126 (1999), pp. 136-140
[10] Shape of drops sliding down an inclined surface (J. Anthoine; J.-M. Buchlin, eds.), Proceedings of 4th European Coating Symposium, Bruxelles, 1–4 October 2001
[11] H.A. Stone, L. Limat, Three-dimensional solutions of the ‘corner-shaped’ contact lines, in preparation
- Wetting transition of the confined receding meniscus with tailing bead formation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 628 (2021), p. 127316 | DOI:10.1016/j.colsurfa.2021.127316
- Formation of residual droplets upon dip-coating of chemical and topographical surface patterns on partially wettable substrates, Chemical Engineering Science, Volume 227 (2020), p. 115832 | DOI:10.1016/j.ces.2020.115832
- Taming contact line instability for pattern formation, Nature Communications, Volume 7 (2016) no. 1 | DOI:10.1038/ncomms12458
- Morphological transitions of sliding drops: Dynamics and bifurcations, Physical Review Fluids, Volume 1 (2016) no. 7 | DOI:10.1103/physrevfluids.1.073901
- Experimental and theoretical study of dewetting corner flow, Journal of Fluid Mechanics, Volume 762 (2015), p. 393 | DOI:10.1017/jfm.2014.623
- Wetting and spreading, Reviews of Modern Physics, Volume 81 (2009) no. 2, p. 739 | DOI:10.1103/revmodphys.81.739
- Cornered drops and rivulets, Physics of Fluids, Volume 19 (2007) no. 4 | DOI:10.1063/1.2722767
- Two hundred years of capillarity research, Physics Today, Volume 59 (2006) no. 3, p. 39 | DOI:10.1063/1.2195314
- A boundary integral formulation of quasi-steady fluid wetting, Journal of Computational Physics, Volume 207 (2005) no. 2, p. 529 | DOI:10.1016/j.jcp.2005.01.022
- Self-similar flow and contact line geometry at the rear of cornered drops, Physics of Fluids, Volume 17 (2005) no. 7 | DOI:10.1063/1.1946607
- Three-dimensional lubrication model of a contact line corner singularity, Europhysics Letters (EPL), Volume 65 (2004) no. 3, p. 365 | DOI:10.1209/epl/i2003-10096-0
- Hydrodynamic Theory of Forced Dewetting, Physical Review Letters, Volume 93 (2004) no. 9 | DOI:10.1103/physrevlett.93.094502
- Roughening transition in a moving contact line, Physical Review E, Volume 67 (2003) no. 3 | DOI:10.1103/physreve.67.031603
- Transition of a moving contact line from smooth to angular, Physics of Fluids, Volume 15 (2003) no. 10, p. 2949 | DOI:10.1063/1.1604778
Cité par 14 documents. Sources : Crossref
Commentaires - Politique