[Principe d'équivalence en contrainte pour milieux poreux saturés]
Le principe d'équivalence en contrainte pour milieux poreux saturés est étudié dans le domaine plastique en utilisant une approche d'homogénéisation. Le squelette est composé d'un matériau micro-isotrope et micro-homogène. La loi de localisation des contraintes dans le milieu poreux saturé est d'abord déterminée. Celle-ci permet de définir une contrainte effective appropriée dans le sens du principe d'équivalence en contrainte. La forme du tenseur des contraintes effectives est étudiée pour deux fonctions de charge particulières du matériau squelette.
The stress equivalence principle for saturated porous media is studied in the plastic domain using a homogenization approach. The skeleton is composed of a micro-isotropic and micro-homogeneous material. The stress localization law in saturated porous media is first obtained. This makes it possible to define an appropriate effective stress tensor in the sense of the stress equivalence principle. The form of the effective stress tensor is examined for two particular yield functions of skeleton material.
Accepté le :
Publié le :
Mots-clés : milieux granulaires, milieux poreux, contrainte effective, poroplasticité, homogénéisation
Dariusz Lydzba 1 ; Jian-Fu Shao 2
@article{CRMECA_2002__330_4_297_0, author = {Dariusz Lydzba and Jian-Fu Shao}, title = {Stress equivalence principle for saturated porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {297--303}, publisher = {Elsevier}, volume = {330}, number = {4}, year = {2002}, doi = {10.1016/S1631-0721(02)01463-8}, language = {en}, }
Dariusz Lydzba; Jian-Fu Shao. Stress equivalence principle for saturated porous media. Comptes Rendus. Mécanique, Volume 330 (2002) no. 4, pp. 297-303. doi : 10.1016/S1631-0721(02)01463-8. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01463-8/
[1] The concept of effective stress for soil, concrete and rock, Geotechnique, Volume 47 (1997), pp. 61-78
[2] Étude de comportment macroscopique d'un milieu poreux saturé déformable, J. Méc., Volume 16 (1977) no. 4, pp. 575-603
[3] Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents, Ref. Geophys. Space Phys., Volume 14 (1976), pp. 227-241
[4] Mechanics of Porous Continua, Willey, UK, 1995
[5] On the validity of the effective stress concept for assessing the strength of saturated porous materials: a homogenization approach, J. Mech. Phys. Solids, Volume 44 (1996), pp. 1649-1667
[6] A micromechanics-based approach to the failure of saturated porous media, Transport in Porous Media, Volume 34 (1999), pp. 47-62
[7] Study of poroelasticity material coefficients as response of microstructure, Mech. Cohesive-Frictional Materials, Volume 5 (2000), pp. 149-171
[8] Elements of homogenization for inelastic solid mechanics, Homogenization Techniques for Composite Media, Lecture Notes in Phys., 272, Springer-Verlag, 1987
- Multiscale modeling of thermo-hydromechanical behavior of clayey rocks and application to geological disposal of radioactive waste, Journal of Rock Mechanics and Geotechnical Engineering, Volume 17 (2025) no. 1, p. 1 | DOI:10.1016/j.jrmge.2024.11.008
- A thermo-hydromechanical damage model and its application to a deep geological radioactive repository, Computers and Geotechnics, Volume 170 (2024), p. 106306 | DOI:10.1016/j.compgeo.2024.106306
- Numerical analysis of thermo-hydromechanical process related to deep geological radioactive repository, Deep Resources Engineering, Volume 1 (2024) no. 1, p. 100001 | DOI:10.1016/j.deepre.2024.100001
- Experimental study of poromechanical behavior of Callovo-Oxfordian claystone in undrained triaxial compression and extension tests, International Journal of Rock Mechanics and Mining Sciences, Volume 182 (2024), p. 105865 | DOI:10.1016/j.ijrmms.2024.105865
- Effective yield strength of a saturated porous medium with a spheroidal meso-pore and spherical micro-pores, Rock Mechanics Bulletin, Volume 3 (2024) no. 1, p. 100097 | DOI:10.1016/j.rockmb.2023.100097
- Three-dimensional Modeling of Cracking with Thermo-hydromechanical Process by Considering Rock Heterogeneity, Rock Mechanics and Rock Engineering, Volume 57 (2024) no. 6, p. 4367 | DOI:10.1007/s00603-023-03536-4
- Numerical analysis of hydro-thermal fracturing in saturated rocks by considering material anisotropy and micro-structural heterogeneity, International Journal of Rock Mechanics and Mining Sciences, Volume 170 (2023), p. 105457 | DOI:10.1016/j.ijrmms.2023.105457
- Numerical modeling of deformation and damage around underground excavation by phase-field method with hydromechanical coupling, Computers and Geotechnics, Volume 138 (2021), p. 104369 | DOI:10.1016/j.compgeo.2021.104369
- A continuum framework for coupled solid deformation–fluid flow through anisotropic elastoplastic porous media, Computer Methods in Applied Mechanics and Engineering, Volume 369 (2020), p. 113225 | DOI:10.1016/j.cma.2020.113225
- Influence of pore pressure on plastic deformation and strength of limestone under compressive stress, Acta Geotechnica, Volume 14 (2019) no. 2, p. 535 | DOI:10.1007/s11440-018-0658-1
- Microseismic monitoring and stability analysis of the right bank slope at Dagangshan hydropower station after the initial impoundment, International Journal of Rock Mechanics and Mining Sciences, Volume 108 (2018), p. 128 | DOI:10.1016/j.ijrmms.2018.06.012
- A micro-mechanics-based elastic–plastic model for porous rocks: applications to sandstone and chalk, Acta Geotechnica (2017) | DOI:10.1007/s11440-017-0536-2
- Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear FEM, Computers and Geotechnics, Volume 81 (2017), p. 143 | DOI:10.1016/j.compgeo.2016.08.009
- A micro-mechanics based viscoplastic model for clayey rocks, Computers and Geotechnics, Volume 89 (2017), p. 92 | DOI:10.1016/j.compgeo.2017.04.014
- A numerical study of mechanical behavior of a cement paste under mechanical loading and chemical leaching, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 41 (2017) no. 18, p. 1848 | DOI:10.1002/nag.2703
- Anisotropic poroplasticity in saturated porous media, effect of confining pressure, and elevated temperature, Porous Rock Fracture Mechanics (2017), p. 27 | DOI:10.1016/b978-0-08-100781-5.00002-6
- Behaviour of clay treated with cement fibre while capturing cementation degradation and fibre failure – C3F Model, International Journal of Plasticity, Volume 81 (2016), p. 168 | DOI:10.1016/j.ijplas.2016.01.015
- A micromechanical study of drying and carbonation effects in cement-based materials, Continuum Mechanics and Thermodynamics, Volume 27 (2015) no. 1-2, p. 49 | DOI:10.1007/s00161-013-0327-4
- Numerical analysis of concrete under a wide range of stress and with different saturation condition, Materials and Structures, Volume 48 (2015) no. 1-2, p. 295 | DOI:10.1617/s11527-013-0184-4
- An Experimental Study and Constitutive Modeling of Saturated Porous Rocks, Rock Mechanics and Rock Engineering, Volume 48 (2015) no. 1, p. 223 | DOI:10.1007/s00603-014-0561-5
- Homogenization of saturated double porous media with Eshelby-like velocity field, Acta Geophysica, Volume 62 (2014) no. 5, p. 1146 | DOI:10.2478/s11600-014-0231-8
- Effective strength of saturated double porous media with a Drucker–Prager solid phase, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 38 (2014) no. 3, p. 281 | DOI:10.1002/nag.2215
- An Experimental and Numerical Investigation of the Mechanical Behaviour of a Concrete and of its Permeability Under Deviatoric Loading, Transport in Porous Media, Volume 102 (2014) no. 3, p. 427 | DOI:10.1007/s11242-014-0284-9
- Modeling of inherent anisotropic behavior of partially saturated clayey rocks, Computers and Geotechnics, Volume 48 (2013), p. 29 | DOI:10.1016/j.compgeo.2012.09.002
- An anisotropic damage–plasticity model for saturated quasi‐brittle materials, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 37 (2013) no. 12, p. 1691 | DOI:10.1002/nag.2103
- Micromechanical modeling of mortar as a matrix‐inclusion composite with drying effects, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 37 (2013) no. 9, p. 1034 | DOI:10.1002/nag.1136
- Modeling the influence of water content on the mechanical behavior of Callovo–Oxfordian argillite, Physics and Chemistry of the Earth, Parts A/B/C, Volume 65 (2013), p. 79 | DOI:10.1016/j.pce.2013.05.007
- Experimental investigation and poroplastic modelling of saturated porous geomaterials, International Journal of Plasticity, Volume 39 (2012), p. 27 | DOI:10.1016/j.ijplas.2012.05.007
- Micromechanical analysis of damage in saturated quasi brittle materials, International Journal of Solids and Structures, Volume 49 (2012) no. 6, p. 919 | DOI:10.1016/j.ijsolstr.2011.12.006
- Influence of chemical degradation on mechanical behavior of a petroleum cement paste, Cement and Concrete Research, Volume 41 (2011) no. 4, p. 412 | DOI:10.1016/j.cemconres.2011.01.008
- Modelling of plastic deformation and damage in cement‐based material subjected to desiccation, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 35 (2011) no. 17, p. 1877 | DOI:10.1002/nag.985
- Elastoplastic damage modeling of desaturation and resaturation in argillites, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 34 (2010) no. 2, p. 187 | DOI:10.1002/nag.819
- Behavior of Concrete in Water Subjected to Dynamic Triaxial Compression, Journal of Engineering Mechanics, Volume 136 (2010) no. 3, p. 379 | DOI:10.1061/(asce)0733-9399(2010)136:3(379)
- Poroplastic damage modeling of unsaturated cement-based materials, Mechanics Research Communications, Volume 36 (2009) no. 8, p. 906 | DOI:10.1016/j.mechrescom.2009.07.003
- A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks, International Journal of Rock Mechanics and Mining Sciences, Volume 45 (2008) no. 8, p. 1237 | DOI:10.1016/j.ijrmms.2008.01.004
- Hydromechanical modelling of shaft excavation in Meuse/Haute-Marne laboratory, Physics and Chemistry of the Earth, Parts A/B/C, Volume 33 (2008), p. S422 | DOI:10.1016/j.pce.2008.10.030
- Thermo-hydro-mechanical modelling of an in situ heating experiment, Géotechnique, Volume 57 (2007) no. 10, p. 845 | DOI:10.1680/geot.2007.57.10.845
- Elastoplastic Damage Behavior of a Mortar Subjected to Compression and Desiccation, Journal of Engineering Mechanics, Volume 133 (2007) no. 4, p. 464 | DOI:10.1061/(asce)0733-9399(2007)133:4(464)
- Elastoplastic damage modelling of argillite in partially saturated condition and application, Physics and Chemistry of the Earth, Parts A/B/C, Volume 32 (2007) no. 8-14, p. 656 | DOI:10.1016/j.pce.2006.02.054
- Elastoplastic Damage Modeling in Unsaturated Rocks and Applications, International Journal of Geomechanics, Volume 6 (2006) no. 2, p. 119 | DOI:10.1061/(asce)1532-3641(2006)6:2(119)
- Hydromechanical Behaviour of Fontainebleau Sandstone, Rock Mechanics and Rock Engineering, Volume 39 (2006) no. 3, p. 185 | DOI:10.1007/s00603-005-0065-4
- Modeling of Plastic Deformation of Saturated Porous Materials: Effective Stress Concept, Applied Micromechanics of Porous Materials, Volume 480 (2005), p. 187 | DOI:10.1007/3-211-38046-9_6
Cité par 42 documents. Sources : Crossref
Commentaires - Politique