[Le tore élastique : raideur anormale des coques de type mixte]
We investigate the deformation of a thin elastic torus under axisymmetric surface loads. The strain concentrates near the top and bottom parallels and the inner and outer halves essentially undergo rigid-body translations in opposite directions. An analysis of the inner boundary layers is presented, which allows one to compute the effective stiffness of the torus for this loading. This stiffness is found anomalous compared to classical shells. These mechanical properties are interpreted using purely geometrical arguments.
Nous étudions la déformation d'un tore élastique mince sous l'effet de forces de surface axisymétriques. La déformation est concentrée au voisinage des parallèles supérieur et inférieur et les moitiés externe et interne subissent essentiellement une translation uniforme l'une par rapport à l'autre. Une analyse de couche limite permet de calculer la rigidité effective du tore, qui suit une loi anormale. Toutes ces propriétés mécaniques sont interprétées par des arguments purement géométriques.
Accepté le :
Publié le :
Mots-clés : solides et structures, coques élastiques, couches limite
Basile Audoly 1 ; Yves Pomeau 2
@article{CRMECA_2002__330_6_425_0, author = {Basile Audoly and Yves Pomeau}, title = {The elastic torus: anomalous stiffness of shells with mixed type}, journal = {Comptes Rendus. M\'ecanique}, pages = {425--432}, publisher = {Elsevier}, volume = {330}, number = {6}, year = {2002}, doi = {10.1016/S1631-0721(02)01479-1}, language = {en}, }
Basile Audoly; Yves Pomeau. The elastic torus: anomalous stiffness of shells with mixed type. Comptes Rendus. Mécanique, Volume 330 (2002) no. 6, pp. 425-432. doi : 10.1016/S1631-0721(02)01479-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01479-1/
[1] A Comprehensive Introduction to Differential Geometry, Publish or Perish, Houston, 1975
[2] Theory of Plates and Shells, McGraw-Hill, New York, 1959
[3] Theoretical Elasticity, Dover, New York, 1992
[4] A model problem for boundary layers of thin elastic shells, Math. Modelling Numer. Anal., Volume 34 (2000), pp. 1-30
[5] Theory of Elastic thin Shells, Pergamon Press, New York, 1961 (Published for the American Society of Mechanical Engineers)
[6] Stresses in Shells, Springer-Verlag, Berlin, 1973 (pp. 30 and 94)
[7] Courbes rigidifiant les surfaces, C. R. Acad. Sci. Paris, Série I, Volume 328 (1999), pp. 313-316
[8] B. Audoly, Y. Pomeau, in preparation
- Gol’denveizer’s problem of elastic torus, Thin-Walled Structures, Volume 171 (2022), p. 108718 | DOI:10.1016/j.tws.2021.108718
- Nonlinear investigation of Gol’denveizer’s problem of a circular and elliptic elastic torus, Thin-Walled Structures, Volume 180 (2022), p. 109862 | DOI:10.1016/j.tws.2022.109862
- Geometry-induced rigidity in elastic torus from circular to oblique elliptic cross-section, International Journal of Non-Linear Mechanics, Volume 135 (2021), p. 103754 | DOI:10.1016/j.ijnonlinmec.2021.103754
- Nonlinear mechanics of rigidifying curves, Physical Review E, Volume 96 (2017) no. 1 | DOI:10.1103/physreve.96.013003
- Geometric localization of thermal fluctuations in red blood cells, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 11, p. 2865 | DOI:10.1073/pnas.1613204114
- Nambu–Goldstone modes and diffuse deformations in elastic shells, Soft Matter, Volume 9 (2013) no. 34, p. 8246 | DOI:10.1039/c3sm50476j
- Geometric Boundary Layers in Shells With Mixed Type, Theories of Plates and Shells, Volume 16 (2004), p. 13 | DOI:10.1007/978-3-540-39905-6_2
Cité par 7 documents. Sources : Crossref
Commentaires - Politique