[Un modèle mathématique décrivant le changement du caractère constitutif du sang dû à l'activation des plaquettes]
Les plaquettes peuvent avoir une profonde influence sur les caractéristiques de l'écoulement sanguin, même si elles ne forment qu'une faible composante du volume du sang. De ce fait, elles peuvent avoir des conséquences graves sur le fonctionnement cardiovasculaire. Les plaquettes sont extrêmement sensibles aux agents chimiques et aux efforts physiques, et le phénomène appelé « activation des plaquettes » est toujours le précurseur de maladies graves telles que : l'infarctus aigü du myocarde, la plupart des attaques, l'embolie pulmonaire, la thrombose veineuse, et les occlusions artérielles aigües. Les appareils cardiovasculaires comme les appareils d'assistance ventriculaire et les valves cardiaques, peuvent produire des forts tenseurs de cisaillement qui causent l'activation de plaquettes. De plus, les surfaces artificielles de ces appareils sont thrombogènes et favorisent la formation de caillots, les dépots thrombotiques pouvant être la cause de pannes de ces appareils. Par conséquent, il y a un besoin criant de développer des modèles mathématiques de l'écoulement sanguin qui prennent en compte l'activation des plaquettes, car un tel modèle n'existait pas auparavant. Bien qu'un travail considérable ait été accompli en rhéologie sanguine, le role des plaquettes dans les caractéristiques de l'écoulement sanguin avait toujours été largement ignoré. Le but de cette Note est de combler cette lacune.
Though a minor component by volume, platelets can have a profound influence on the flow characteristics of blood and thereby have serious consequences with regard to cardiovascular functions. Platelets are extremely sensitive to chemical agents as well as mechanical inputs and platelet activation is a necessary precursor to many life threatening medical conditions such as acute myocardial infarction, most strokes, acute arterial occlusion, venous thrombosis and pulmonary embolism. In cardiovascular devices such as ventricular assist devices and prosthetic heart valves, high shear stresses can trigger platelet activation. Moreover, such devices have artificial surfaces that are thrombogenic, the thrombotic deposition contributing to the failure of the device. Thus, there is a need to develop a mathematical model for the flow of blood that takes into account platelet activation, no such model being available at the moment. While there has been considerable amount of work in blood rheology, the role of platelets in the flow characteristics of blood has been largely ignored. This study addresses this lacuna.
Accepté le :
Publié le :
Mot clés : rhéologie, activation des plaquettes, amincissement par cisaillement, viscoélasticité
Mohan Anand 1 ; Kumbakonam R. Rajagopal 1
@article{CRMECA_2002__330_8_557_0, author = {Mohan Anand and Kumbakonam R. Rajagopal}, title = {A mathematical model to describe the change in the constitutive character of blood due to platelet activation}, journal = {Comptes Rendus. M\'ecanique}, pages = {557--562}, publisher = {Elsevier}, volume = {330}, number = {8}, year = {2002}, doi = {10.1016/S1631-0721(02)01501-2}, language = {en}, }
TY - JOUR AU - Mohan Anand AU - Kumbakonam R. Rajagopal TI - A mathematical model to describe the change in the constitutive character of blood due to platelet activation JO - Comptes Rendus. Mécanique PY - 2002 SP - 557 EP - 562 VL - 330 IS - 8 PB - Elsevier DO - 10.1016/S1631-0721(02)01501-2 LA - en ID - CRMECA_2002__330_8_557_0 ER -
%0 Journal Article %A Mohan Anand %A Kumbakonam R. Rajagopal %T A mathematical model to describe the change in the constitutive character of blood due to platelet activation %J Comptes Rendus. Mécanique %D 2002 %P 557-562 %V 330 %N 8 %I Elsevier %R 10.1016/S1631-0721(02)01501-2 %G en %F CRMECA_2002__330_8_557_0
Mohan Anand; Kumbakonam R. Rajagopal. A mathematical model to describe the change in the constitutive character of blood due to platelet activation. Comptes Rendus. Mécanique, Volume 330 (2002) no. 8, pp. 557-562. doi : 10.1016/S1631-0721(02)01501-2. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01501-2/
[1] Platelet Activation, Academic Press, Florida, 1987
[2] Surface-mediated control of blood coagulation: The role of binding site densities and platelet deposition, Biophys. J., Volume 80 (2001) no. 3, pp. 1050-1074
[3] Reaction complexity of flowing human blood, Biophys. J., Volume 80 (2001) no. 3, pp. 1031-1032
[4] Blood viscosity: Influence of erythrocyte deformation, Science, Volume 157 (1967) no. 3790, pp. 827-829
[5] Blood viscosity: Influence of erythrocyte aggregation, Science, Volume 157 (1967) no. 3790, pp. 829-831
[6] Viscoelastic properties of human blood and red cell suspensions, Biorheology, Volume 12 (1975), pp. 341-346
[7] Viscoelasticity of human blood, Biophys. J., Volume 12 (1972), pp. 1205-1217
[8] A constitutive model for whole human blood, Biorheology, Volume 13 (1976), pp. 201-210
[9] The superimposition of steady and oscillatory shear and its effect on the viscoelasticity of human blood and a blood-like model fluid, Biorheology, Volume 34 (1997) no. 1, pp. 19-36
[10] Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood, Biorheology, Volume 16 (1979), pp. 149-162
[11] A nonlinear Maxwell model of bio-fluids: Application to normal blood, Biorheology, Volume 30 (1993) no. 3–4, pp. 253-265
[12] The effect of blood viscoelasticity on pulastile flow in stationary and axially moving tubes, Biorheology, Volume 33 (1996) no. 3, pp. 185-206
[13] Toward a constitutive equation for blood, Biorheology, Volume 12 (1975), pp. 383-389
[14] K.K. Yeleswarapu, Evaluation of continuum models for characterizing the constitutive behavior of blood, Ph.D. Dissertation, Univ. Pittsburgh, Pittsburgh, 1996
[15] A thermodynamic framework for rate-type fluid models, J. Non-Newt. Fluid Mech., Volume 88 (2000), pp. 207-227
[16] J. Murali Krishnan, K.R. Rajagopal, A thermodynamic framework for the constitutive modeling of asphalt concrete: Theory and application, in press
[17] Phenomenological modeling of polymer crystallization using the notion of multiple natural configurations, Interf. Free Bound., Volume 2 (2000), pp. 73-94
[18] A study of strain-induced crystallization of polymers, Int. J. Solids Structures, Volume 38 (2001) no. 6–7, pp. 1149-1167
[19] The flow of blood in tubes: Theory and experiment, Mech. Res. Comm., Volume 25 (1998) no. 3, pp. 257-262
[20] Computational simulation of platelet deposition and activation: I. Model development and properties, Ann. Biomed. Engrg., Volume 27 (1999), pp. 436-448
[21] Response of human platelets to shear stress, Trans. Amer. Soc. Artif. Int. Organs, Volume 21 (1975), pp. 35-39
[22] Morphological, biochemical and functional changes in human platelets subjected to shear stress, J. Lab. Clin. Med., Volume 86 (1975) no. 3, pp. 462-471
[23] Shear induced platelet activation a critical reappraisal, Biorheology, Volume 22 (1985), pp. 399-413
Cité par Sources :
Commentaires - Politique