[Agrégation des globules rouges : De la formation des rouleaux à celle des caillots]
Il est bien connu que les globules rouges forment des agrégats, connus sous le nom de rouleaux. Il est souvent admis que ce phénomène dʼagrégation est réversible, mais lʼélucidation précise des mécanismes à lʼœuvre dans le processus conduisant à la liaison entre globules rouges est loin dʼêtre achevée. Il existe dans la littérature au moins deux modèles distincts, lʼun est basé sur la formation de ponts moléculaires, lʼautre sur la notion de déplétion. Nous passons en revue les résultats expérimentaux récents à lʼéchelle cellulaire et analysons le modèle théorique basé sur la notion de déplétion. Nous discuterons lʼinfluence de la forme cellulaire sur la force de liaison. Un autre mécanisme dʼagrégation jouant un rôle important in vivo est celui associé à lʼactivation plaquettaire. Ceci peut conduire à la formation de caillots sanguins, processus vital lorsquʼil sʼagit de cicatrisation de blessures, mais qui peut être également fatal, constituant une cause majeure de décès, lorsquʼil sʼagit de thrombose.
Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.
Mot clés : Globules rouges, Dépletion, Agrégation
Christian Wagner 1 ; Patrick Steffen 1 ; Saša Svetina 2, 3
@article{CRPHYS_2013__14_6_459_0, author = {Christian Wagner and Patrick Steffen and Sa\v{s}a Svetina}, title = {Aggregation of red blood cells: {From} rouleaux to clot formation}, journal = {Comptes Rendus. Physique}, pages = {459--469}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.04.004}, language = {en}, }
TY - JOUR AU - Christian Wagner AU - Patrick Steffen AU - Saša Svetina TI - Aggregation of red blood cells: From rouleaux to clot formation JO - Comptes Rendus. Physique PY - 2013 SP - 459 EP - 469 VL - 14 IS - 6 PB - Elsevier DO - 10.1016/j.crhy.2013.04.004 LA - en ID - CRPHYS_2013__14_6_459_0 ER -
Christian Wagner; Patrick Steffen; Saša Svetina. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 459-469. doi : 10.1016/j.crhy.2013.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.004/
[1] Abnormal adherence of sickle erythrocytes to cultured vascular endothelium, J. Clin. Invest., Volume 65 (1980), pp. 154-160
[2] A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 14618-14622
[3] Sickle cell biomechanics, Annu. Rev. Biomed. Eng., Volume 12 (2010), pp. 345-367
[4] Red Blood Cell Aggregation, CRC Press, Taylor and Francis Group, 2012
[5] Ultrastructural basis of the mechanism of rouleaux formation, Microvasc. Res., Volume 5 (1973), pp. 155-166
[6] Physicochemical basis and clinical implications of red cell aggregation, Clin. Hemorheol., Volume 7 (1987), pp. 71-91
[7] The suspension stability of the blood, Physiol. Rev., Volume 9 (1929), pp. 241-274
[8] Rouleaux formation – its causes, estimation and consequences, Turk. J. Med. Sci., Volume 14 (1990), pp. 447-453
[9] Microscopy and viscometry of blood flowing under uniform shear rate, J. Appl. Physiol., Volume 26 (1969), pp. 674-678
[10] Dynamics and rheology of a dilute suspension of vesicles: Higher-order theory, Phys. Rev. E, Volume 76 (2007), p. 041905
[11] Enhancement of red blood cell washout from blood clots by alteration of gel pore size and red cell flexibility, Am. J. Physiol., Heart Circ. Physiol., Volume 259 (1990), p. H1527
[12] The relation of blood platelets to hemorrhagic disease, JAMA, Volume 55 (1910), pp. 1185-1192
[13] Role of red blood cells in thrombosis, Curr. Opin. Hematol., Volume 6 (1999), p. 76
[14] The effect of red blood cells on thrombin generation, Br. J. Haematol., Volume 133 (2006), p. 403
[15] Prostaglandin activates channel-mediated calcium entry in human erythrocytes: an indication for a blood clot formation supporting process, Thromb. Haemost., Volume 92 (2004), pp. 1269-1272
[16] Phosphatidylserine exposure in red blood cells: A suggestion for the active role of red blood cells in blood clot formation, Saarland University, 2010 (Ph.D. thesis)
[17] Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion, Cell Calcium, Volume 50 (2011) no. 1, pp. 54-61
[18] An integrated study of fibrinogen during blood coagulation, J. Biol. Chem., Volume 274 (1999), pp. 22862-22870
[19] The mechanism of the dextran-induced red blood cell aggregation, Eur. Biophys. J., Volume 36 (2007), pp. 85-94
[20] Red blood cell aggregation measurements in whole blood and in fibrinogen solutions by different methods, Clin. Hemorheol. Microcirc., Volume 24 (2001), pp. 75-83
[21] Mechanism of red cell aggregation (D. Platt, ed.), Blood Cells, Rheology and Aging, Springer-Verlag, 1988
[22] The effect of neutral polymers on the electrokinetic potential of cells and other charged particles: IV. Electrostatic effects in dextran-mediated cellular interactions, J. Colloid Interface Sci., Volume 43 (1973), pp. 714-726
[23] Blood volume, hemodynamic and metabolic changes in hemorrhagic shock in normal and splenectomized dogs, Am. J. Physiol., Volume 225 (1973), pp. 866-879
[24] Effect of dextran polymer on glycocalyx structure and cell electrophoretic mobility, Colloid Polym. Sci., Volume 263 (1985), pp. 494-500
[25] Biophysical behavior of red cells in suspensions, The Red Blood Cell, Academic Press, 1975
[26] Interactions between particles suspended in solutions of macromolecules, J. Polym. Sci., Volume 33 (1958), pp. 183-192
[27] Scaling Concepts in Polymer Physics, Cornell University Press, 1979
[28] Direct measurement of infinitesimal depletion force in a colloid–polymer mixture by laser radiation pressure, Phys. Rev. Lett., Volume 78 (1997), pp. 3963-3966
[29] Mechanisms of erythrocyte aggregation, Erythrocyte Mechanics and Blood Flow, A.R. Liss, New York, 1980, pp. 119-140
[30] Involvement of fibrinogen specific binding in erythrocyte aggregation, FEBS Lett., Volume 517 (2002), pp. 41-44
[31] Do plasma proteins adsorb to red cells?, Clin. Hemorheol., Volume 9 (1989), pp. 695-714
[32] A critical reevaluation of the nonspecific adsorption of plasma proteins and dextrans to erythrocytes and the role of these in rouleaux formation (M. Bender, ed.), Interfacial Phenomena in Biological Systems, Marcel Dekker, New York, 1991, pp. 193-250
[33] The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation, Biophys. J., Volume 87 (2004), pp. 4259-4270
[34] Electrophoresis of human red blood cells and platelets: evidence for depletion of dextran, Biorheology, Volume 33 (1996), pp. 333-351
[35] Depletion mediated red blood cell aggregation in polymer solutions, Biophys. J., Volume 83 (2002), pp. 2482-2490
[36] Quantitation of surface affinities of red blood cells in dextran solutions and plasma, Biochemistry, Volume 21 (1982), pp. 3235-3239
[37] Quantification of depletion induced adhesion of red blood cells, Phys. Rev. Lett., Volume 110 (2013), p. 018102
[38] Quantifying cellular adhesion to extracellular matrix components by single-cell force spectroscopy, Nat. Protoc., Volume 5 (2010), pp. 1353-1361
[39] Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch. C, Volume 28 (1973), pp. 693-703
[40] Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles, Z. Naturforsch. C, Volume 29 (1974), pp. 510-515
[41] Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells, Biophys. J., Volume 30 (1980), pp. 265-284
[42] Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis, Stud. Biophys., Volume 110 (1985), pp. 177-184
[43] Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity, Phys. Rev. E, Volume 49 (1994), pp. 5389-5407
[44] Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells, Biophys. J., Volume 72 (1997), pp. 2669-2678
[45] Configurations of fluid membranes and vesicles, Adv. Phys., Volume 46 (1997), pp. 13-137
[46] Vesicle budding and the origin of cellular life, Chem. Phys. Chem., Volume 10 (2009), pp. 2769-2776
[47] Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane mechanics, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 16766-16769
[48] Adhesion of vesicles, Phys. Rev. A, Volume 42 (1990), pp. 4768-4771
[49] Equilibrium shapes of erythrocytes in rouleau formation, Biophys. J., Volume 84 (2003), pp. 1486-1492
[50] Contact lines for fluid surface adhesion, Phys. Rev. E, Volume 76 (2007), pp. 011605-011615
[51] Mechanics of membrane–membrane adhesion, Math. Mech. Solids, Volume 16 (2011), pp. 872-886
[52] Mechanics of rouleau formation, Biophys. J., Volume 35 (1981), pp. 771-781
[53] Flat and sigmoidally curved contact zones in vesicle–vesicle adhesion, Proc. Natl. Acad. Sci. USA, Volume 104 (2007), pp. 761-765
[54] Effects of fibrinogen and a2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates, Therap. Apher. Dial., Volume 12 (2008), pp. 360-367
[55] Morphology of small aggregates of red blood cells, Bioelectrochemistry, Volume 73 (2008), pp. 84-91
[56] Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing, Biophys. J., Volume 82 (2002), pp. 1756-1772
[57] Elastic properties of the red blood cell membrane that determine echinocyte deformability, Eur. Biophys. J., Volume 33 (2004), pp. 1-15
[58] Triggers, targets and treatments for thrombosis, Nature, Volume 451 (2008), pp. 914-918
[59] Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes, Arterioscler. Thromb. Vasc. Biol., Volume 27 (2007), pp. 414-421
[60] Evidence for a voltage-gated, non selective cation channel in the human red cell membrane, Biochim. Biophys. Acta, Volume 1065 (1991), pp. 103-106
[61] Non-selective voltage-activated cation channel in the human red blood cell membrane, Biochim. Biophys. Acta, Volume 1417 (1999), pp. 9-15
[62] Ion channels in the human red blood cell membrane: their further investigation and physiological relevance, Bioelectrochemistry, Volume 55 (2002), pp. 71-74
[63] Calcium imaging of individual erythrocytes: Problems and approaches, Cell Calcium, Volume 39 (2006), pp. 13-19
[64] The function of calcium in the potassium permeability of human erythrocytes, Biochim. Biophys. Acta, Volume 30 (1958), pp. 653-654
[65] Prostaglandin stimulates a Ca2+-dependent channel in human erythrocytes and alters cell volume and filterability, J. Biol. Chem., Volume 271 (1996), pp. 18651-18656
[66] Role of Ca2+-activated channels in human erythrocyte apoptosis, Am. J. Physiol. Cell Physiol., Volume 285 (2003), pp. 1553-1560
[67] Isolation of an erythrocyte membrane protein that mediates Ca2+-dependent transbilayer movement of phospholipid, J. Biol. Chem., Volume 271 (1996), pp. 17205-17210
[68] Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes, Biochemistry, Volume 31 (1992), pp. 6355-6360
[69] Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets, Biochemistry, Volume 34 (1995), pp. 10448-10455
[70] Ca2+ sensitivity of phospholipid scrambling in human red cell ghosts, Cell Calcium, Volume 25 (1999), pp. 313-320
[71] Comparison between Ca2+-induced scrambling of various fluorescently labelled lipid analogues in red blood cells, Biochem. J., Volume 362 (2002), pp. 741-747
[72] Phosphatidylserine related adhesion of human erythrocytes to vascular endothelium, Br. J. Haematol., Volume 107 (1999), pp. 300-302
[73] Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin, Blood, Volume 95 (2000), pp. 1293-1300
[74] Cerebral venous sinus thrombosis in severe malaria, Southeast Asian J. Trop. Med. Public Health, Volume 40 (2009), pp. 893-897
[75] The hypercoagulable state in thalassemia, Blood, Volume 99 (2002), pp. 36-43
[76] Thalassemia and hypercoagulability, Blood Rev., Volume 22 (2008), pp. 283-292
[77] Effects of transbilayer phospholipid distribution on erythrocyte fusion, Biosci. Rep., Volume 9 (1989), pp. 623-633
[78] Pathophysiologic implications of membrane phospholipid asymmetry in blood cells, Blood, Volume 89 (1997), pp. 1121-1132
[79] Surface exposure of phosphatidylserine in pathological cells, Cell. Mol. Life Sci., Volume 62 (2005), pp. 971-988
[80] Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells – recognition by autologous macrophages, J. Biol. Chem., Volume 258 (1983), pp. 1335-1343
[81] In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes, J. Biol. Chem., Volume 260 (1985), pp. 5131-5138
[82] New insights into the mechanism for clearance of apoptotic cells, BioEssays, Volume 22 (2000), pp. 878-881
[83] Lysophosphatidic acid induced red blood cell aggregation in vitro, Bioelectrochemistry, Volume 87 (2012), pp. 89-95
[84] The bioactive phospholipid lysophosphatidic acid is released from activated platelets, Biochem. J., Volume 291 (1993), pp. 677-680
[85] Cell disaggregation behavior in shear flow, Biophys. J., Volume 51 (1987), pp. 795-807
[86] The role of red cells in haemostasis: the relation between haematocrit, bleeding time and platelet adhesiveness, Br. J. Haematol., Volume 7 (1961), pp. 42-50
[87] Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions, Lancet, Volume 320 (1982), pp. 1013-1015
Cité par Sources :
Commentaires - Politique