[Critère de plasticité des matériaux poreux en déformation plane : Estimations du second ordre et résultats numériques]
Cette Note présente une comparaison entre d'une part, les estimations issues d'une récente théorie d'homogénéisation, dite de « deuxième ordre », pour les matériaux parfaitement plastiques poreux en déformation plane, et d'autre part, les résultats homologues obtenus par analyse limite grâce une nouvelle technique de linéarisation du problème et une optimisation systématique des maillages éléments finis utilisés. Qualitativement parlant on observe un bon accord entre les deux approches sur la forme de la surface limite, avec mise en évidence d'un point anguleux sur l'axe hydrostatique, et sur la dépendance de la contrainte équivalente en cisaillement avec la porosité, contrainte dont la limite pour les faibles porosités apparaît non analytique. Ces deux caractéristiques ne sont pas prévues par le modèle de Gurson standard.
This Note presents a comparison of some recently developed “second-order” homogenization estimates for two-dimensional, ideally plastic porous media subjected to plane strain conditions with corresponding yield analysis results using a new linearization technique and systematically optimized finite elements meshes. Good qualitative agreement is found between the second-order theory and the yield analysis results for the shape of the yield surfaces, which exhibit a corner on the hydrostatic axis, as well as for the dependence of the effective flow stress in shear on the porosity, which is found to be non-analytic in the dilute limit. Both of these features are inconsistent with the predictions of the standard Gurson model.
Accepté le :
Publié le :
Mots-clés : matériaux poreux, homogénéisation, analyse limite, optimisation
Joseph Pastor 1 ; Pedro Ponte Castañeda 2
@article{CRMECA_2002__330_11_741_0, author = {Joseph Pastor and Pedro Ponte Casta\~neda}, title = {Yield criteria for porous media in plane strain: second-order estimates versus numerical results}, journal = {Comptes Rendus. M\'ecanique}, pages = {741--747}, publisher = {Elsevier}, volume = {330}, number = {11}, year = {2002}, doi = {10.1016/S1631-0721(02)01526-7}, language = {en}, }
TY - JOUR AU - Joseph Pastor AU - Pedro Ponte Castañeda TI - Yield criteria for porous media in plane strain: second-order estimates versus numerical results JO - Comptes Rendus. Mécanique PY - 2002 SP - 741 EP - 747 VL - 330 IS - 11 PB - Elsevier DO - 10.1016/S1631-0721(02)01526-7 LA - en ID - CRMECA_2002__330_11_741_0 ER -
%0 Journal Article %A Joseph Pastor %A Pedro Ponte Castañeda %T Yield criteria for porous media in plane strain: second-order estimates versus numerical results %J Comptes Rendus. Mécanique %D 2002 %P 741-747 %V 330 %N 11 %I Elsevier %R 10.1016/S1631-0721(02)01526-7 %G en %F CRMECA_2002__330_11_741_0
Joseph Pastor; Pedro Ponte Castañeda. Yield criteria for porous media in plane strain: second-order estimates versus numerical results. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 741-747. doi : 10.1016/S1631-0721(02)01526-7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01526-7/
[1] Étude du critère de plasticité des matériaux poreux, C. R. Acad. Sci. Paris, Série IIb, Volume 329 (2001), pp. 753-760
[2] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I – Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757
[3] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. II – Applications, J. Mech. Phys. Solids, Volume 50 (2002), pp. 759-782
[4] Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Engrg. Math. Tech, Volume 99 (1977), pp. 1-15
[5] New bounds and estimates for porous media with rigid perfectly plastic matrix, C. R. Mécanique, Volume 330 (2002), pp. 127-132
[6] Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862
[7] The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71
[8] Limit analysis of unidirectional porous media, Mech. Res. Comm, Volume 25 (1998), pp. 535-542
[9] Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Engrg, Volume 172 (1999), pp. 109-143
[10] Ductile fracture model and their potential in local approach of fracture, Nuclear Engrg. Design, Volume 105 (1987), pp. 97-111
[11] The evolution of damage and fracture in iron compacts with various initial porosities, Acta Metall, Volume 36 (1988), pp. 1201-1211
[12] Plasticity criterion for porous medium with cylindrical void, C. R. Mécanique, Volume 330 (2002) (submitted)
[13] On bounds for the overall potential of power-law materials containing voids with an arbitrary shape, Mech. Res. Comm, Volume 19 (1992), pp. 51-58
[14] New bounds of the height limit of a vertical slope, Internat. J. Numer. Anal. Methods Geomech, Volume 24 (2000), pp. 165-182
[15] On polyhedral approximations of the second-order cone, Math. Oper. Res, Volume 26 (2001), pp. 193-205
[16] F. Glineur, Topics in convex optimization, Thèse de la Faculté Polytechnique de Mons, Belgique, 2001
[17] Nonlinear composites, Adv. Appl. Mech, Volume 34 (1998), pp. 171-302
[18] Comparaison des charges limites d'une structure réelle et homogénéisée, J. Méc. Théor. Appl, Volume 6 (1987), pp. 121-143
[19] Charges limites, plasticité et homogénéisation : le cas d'un bord chargé, C. R. Acad. Sci. Paris, Série I, Volume 305 (1987), pp. 441-444
[20] P. Suquet, Private communication, 2001
Cité par Sources :
Commentaires - Politique