[Un critère de plasticité pour un matériau poreux à vide cylindrique]
On développe à partir du critère de Gurson un nouveau critère de plasticité pour un matériau poreux à vides cylindriques, en contraintes planes. D'une forme simple et sans paramètres ajustables, ce critère est non-analytique par rapport à la porosité et présente un point anguleux. Il reproduit de façon satisfaisante des résultats numériques récents de Francescato et al. pour différentes porosités.
A simple Gurson-based yield criterion for porous materials with cylindrical voids in plane stress is proposed. With no adjustable parameters, it compares quite satisfactorily with recent numerical data by Francescato et al. for different porosities. It is non-analytic with respect to the porosity, and displays an angulous point.
Accepté le :
Publié le :
Mots-clés : milieux pareux, comportement ductile, plasticité parfaite, modèle de Gurson, cavités cylindriques, homogénéisation
Yves-Patrick Pellegrini 1
@article{CRMECA_2002__330_11_763_0, author = {Yves-Patrick Pellegrini}, title = {Plasticity criterion for porous medium with cylindrical void}, journal = {Comptes Rendus. M\'ecanique}, pages = {763--768}, publisher = {Elsevier}, volume = {330}, number = {11}, year = {2002}, doi = {10.1016/S1631-0721(02)01527-9}, language = {en}, }
Yves-Patrick Pellegrini. Plasticity criterion for porous medium with cylindrical void. Comptes Rendus. Mécanique, Volume 330 (2002) no. 11, pp. 763-768. doi : 10.1016/S1631-0721(02)01527-9. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01527-9/
[1] Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for porous ductile media, J. Engrg. Math. Tech, Volume 99 (1977), pp. 2-15
[2] Influence of voids on shear band instabilities under plane strain conditions, Internat. J. Fracture, Volume 17 (1981) no. 4, pp. 389-407
[3] O. Richmond, R.E. Smelser, Alcoa Technical Center Memorandum, March 7, 1985, unpublished
[4] A lower bound approach to the yield loci of porous materials, Acta Mech. Sinica, Volume 5 (1989) no. 3, pp. 399-406
[5] Material failure by void growth to coalescence, Adv. Appl. Mech, Volume 27 (1990), pp. 83-151
[6] Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I. Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 735-757 II. Applications, J. Mech. Phys. Solids 50 (2002) 759–782
[7] Effective-medium theory for strongly nonlinear media, Phys. Rev. B, Volume 64 (2001), pp. 1-11
[8] Étude du critère de plasticité des matériaux poreux, C. R. Acad. Sci. Paris, Série IIb, Volume 329 (2001), pp. 753-760
[9] On the ductile enlargment of voids in triaxial stress fields, J. Mech. Phys. Solids, Volume 17 (1969), pp. 201-217
[10] Ductile fracture models and their potential in local approach of fracture, Nuclear Engrg. Design, Volume 105 (1987), pp. 97-111
[11] A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140
[12] Exact results and approximate models for porous viscoplastic solids, Internat. J. Plast, Volume 10 (1994) no. 3, pp. 213-235
[13] J. Pastor, Private communication
[14] The continuum theory of plasticity on the macroscale and the microscale, J. Mater, Volume 1 (1966), pp. 873-910
Cité par Sources :
Commentaires - Politique