La modélisation mathématique des robots industriels est fondée sur la nature vectorielle de l'espace articulaire à n dimensions du robot défini comme chaı̂ne cinématique à n degrés de liberté. Or, à notre avis, la nature vectorielle de cet espace articulaire n'a pas été suffisamment discutée dans la littérature. Nous établissons la nature vectorielle de l'espace articulaire de la robotique industrielle à partir des études fondamentales de B. Roth sur les vissages.
The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws.
Accepté le :
Publié le :
Keywords: Robotics, Industrial robotics, Joint space, Roth's proof
Bertrand Tondu 1
@article{CRMECA_2003__331_5_357_0, author = {Bertrand Tondu}, title = {L'espace articulaire de la {Robotique} {Industrielle} est un espace vectoriel}, journal = {Comptes Rendus. M\'ecanique}, pages = {357--364}, publisher = {Elsevier}, volume = {331}, number = {5}, year = {2003}, doi = {10.1016/S1631-0721(03)00074-3}, language = {fr}, }
Bertrand Tondu. L'espace articulaire de la Robotique Industrielle est un espace vectoriel. Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 357-364. doi : 10.1016/S1631-0721(03)00074-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00074-3/
[1] Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, MA, 1981
[2] Introduction to Robotics. Mechanics and Control, Addison-Wesley, Reading, MA, 1989
[3] Foundations of Robotics, MIT Press, Cambridge, MA, 1990
[4] Modélisation, Identification et Commande des Robots, Hermes Science, Paris, 1999
[5] The kinematics of motion through finitely separated positions, ASME J. Appl. Mech. Ser. E, Volume 34 (1967) no. 3, pp. 591-598
[6] Finite-position theory applied to mechanism synthesis, ASME J. Appl. Mech. Ser. E, Volume 34 (1967) no. 3, pp. 599-605
[7] Matrices and Transformations, Prentice-Hall, 1966 (Réimprimé par Dover, New York, 1978)
[8] A coordinate system for describing joint positions, Adv. Bioengrg. (1978), pp. 59-62
[9] Justification of triaxial goniometer for the measurement of joint rotation, J. Biomech., Volume 13 (1980), pp. 989-1006
[10] A joint coordinate system for the clinical description of three-dimensional motions: application to the knee, ASME J. Biomech. Engrg., Volume 105 (1983) no. 2, pp. 136-144
[11] The kinematics of manipulators under computer control, Proc. of 2nd Int. Conf. on the Theory of Machines and Mechanisms, Warsaw, September 1969 , pp. 159-168
[12] Robots, Appl. Mech. Rev., Volume 31 (1978) no. 11, pp. 1511-1519
[13] Robots – state of the art in regard to mechanisms theory, ASME J. Mechanisms Transmission and Automation in Design, Volume 105 (1983) no. 1, pp. 11-12
[14] Theoretical Kinematics, North-Holland, 1990 (Réimprimé chez Dover, New Yor)
[15] Le sens du Mouvement, Odile Jacob, Paris, 1997 (p. 162)
Cité par Sources :
Commentaires - Politique