Comptes Rendus
L'espace articulaire de la Robotique Industrielle est un espace vectoriel
Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 357-364.

La modélisation mathématique des robots industriels est fondée sur la nature vectorielle de l'espace articulaire à n dimensions du robot défini comme chaı̂ne cinématique à n degrés de liberté. Or, à notre avis, la nature vectorielle de cet espace articulaire n'a pas été suffisamment discutée dans la littérature. Nous établissons la nature vectorielle de l'espace articulaire de la robotique industrielle à partir des études fondamentales de B. Roth sur les vissages.

The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00074-3
Mot clés : Robotique, Robotique industrielle, Espace articulaire, Preuve de Roth
Keywords: Robotics, Industrial robotics, Joint space, Roth's proof
Bertrand Tondu 1

1 Laboratoire d'étude des systèmes informatiques et automatiques, institut national de sciences appliquées, campus de Rangueil, 31077 Toulouse, France
@article{CRMECA_2003__331_5_357_0,
     author = {Bertrand Tondu},
     title = {L'espace articulaire de la {Robotique} {Industrielle} est un espace vectoriel},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {357--364},
     publisher = {Elsevier},
     volume = {331},
     number = {5},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00074-3},
     language = {fr},
}
TY  - JOUR
AU  - Bertrand Tondu
TI  - L'espace articulaire de la Robotique Industrielle est un espace vectoriel
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 357
EP  - 364
VL  - 331
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00074-3
LA  - fr
ID  - CRMECA_2003__331_5_357_0
ER  - 
%0 Journal Article
%A Bertrand Tondu
%T L'espace articulaire de la Robotique Industrielle est un espace vectoriel
%J Comptes Rendus. Mécanique
%D 2003
%P 357-364
%V 331
%N 5
%I Elsevier
%R 10.1016/S1631-0721(03)00074-3
%G fr
%F CRMECA_2003__331_5_357_0
Bertrand Tondu. L'espace articulaire de la Robotique Industrielle est un espace vectoriel. Comptes Rendus. Mécanique, Volume 331 (2003) no. 5, pp. 357-364. doi : 10.1016/S1631-0721(03)00074-3. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00074-3/

[1] R.P. Paul Robot Manipulators: Mathematics, Programming and Control, MIT Press, Cambridge, MA, 1981

[2] J.J. Craig Introduction to Robotics. Mechanics and Control, Addison-Wesley, Reading, MA, 1989

[3] T. Yoshikawa Foundations of Robotics, MIT Press, Cambridge, MA, 1990

[4] W. Khalil; E. Dombre Modélisation, Identification et Commande des Robots, Hermes Science, Paris, 1999

[5] B. Roth The kinematics of motion through finitely separated positions, ASME J. Appl. Mech. Ser. E, Volume 34 (1967) no. 3, pp. 591-598

[6] B. Roth Finite-position theory applied to mechanism synthesis, ASME J. Appl. Mech. Ser. E, Volume 34 (1967) no. 3, pp. 599-605

[7] A. Pettofrezo Matrices and Transformations, Prentice-Hall, 1966 (Réimprimé par Dover, New York, 1978)

[8] W.J. Suntay; E.S. Grood; F.R. Noyes; D.L. Butler A coordinate system for describing joint positions, Adv. Bioengrg. (1978), pp. 59-62

[9] E.Y.S. Chao Justification of triaxial goniometer for the measurement of joint rotation, J. Biomech., Volume 13 (1980), pp. 989-1006

[10] E.S. Grood; W.J. Suntay A joint coordinate system for the clinical description of three-dimensional motions: application to the knee, ASME J. Biomech. Engrg., Volume 105 (1983) no. 2, pp. 136-144

[11] D.L. Pieper; B. Roth The kinematics of manipulators under computer control, Proc. of 2nd Int. Conf. on the Theory of Machines and Mechanisms, Warsaw, September 1969 , pp. 159-168

[12] B. Roth Robots, Appl. Mech. Rev., Volume 31 (1978) no. 11, pp. 1511-1519

[13] B. Roth Robots – state of the art in regard to mechanisms theory, ASME J. Mechanisms Transmission and Automation in Design, Volume 105 (1983) no. 1, pp. 11-12

[14] O. Bottema; B. Roth Theoretical Kinematics, North-Holland, 1990 (Réimprimé chez Dover, New Yor)

[15] A. Berthoz Le sens du Mouvement, Odile Jacob, Paris, 1997 (p. 162)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Planification et simulation de chirurgie cardiaque mini-invasive robotisée

Ève Coste-Manière; Louaï Adhami; Renault Severac-Bastide; ...

C. R. Biol (2002)


A robotic model for Codman's paradox simulation and interpretation

Bertrand Tondu

C. R. Méca (2018)


Implementation and experimental tests of an impedance control of pneumatic artificial muscles for isokinetic rehabilitation

Mahdi Chavoshian; Mostafa Taghizadeh; Nima Zamani Meymian

C. R. Méca (2020)