Comptes Rendus
Flow in wavy tube structure: asymptotic analysis and numerical simulation
Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 609-615.

This paper deals with the study of the stationary, incompressible, 2D flow of a fluid in a thin wavy tube. In this work, we consider a domain which is the union of two wavy tubes depending on a small parameter. The asymptotic expansion is constructed. The method of partial asymptotic decomposition is applied. The numerical implementation of this method for the extrusion process is developed. The new physical effects are discussed.

Nous considérons ici le mouvement bi-dimensionnel et stationnaire d'un fluide incompressible à l'intérieur d'un domaine constitué de tubes ondulés. La méthode de décomposition asymptotique partielle du domaine est mise en place et des résultats numériques, obtenus pour la modélisation de procédés d'extrusion seront présentés afin de justifier l'application de cette méthode.

Received:
Accepted:
Published online:
DOI: 10.1016/S1631-0721(03)00131-1
Keywords: Computational fluid mechanics, Asymptotic expansion, Stokes equation, Partial asymptotic domain decomposition, Extrusion, Numerical solution
Mot clés : Mécanique des fluides numérique, Dévéloppement asymptotique, Équation de Stokes, Décomposition asymptotique partielle du domaine, Extrusion, Solution numérique

Auder Ainser 1; Delphine Dupuy 2; Gregory P. Panasenko 2, 3; Ivan Sirakov 1

1 Laboratoire de rhéologie des matières plastiques, Université de Saint-Etienne, 23, rue Paul Michelon, 42023 Saint-Etienne, France
2 Équipe d'analyse numérique, UPRES EA 3058, Université de Saint-Etienne, 23, rue Paul Michelon, 42023 Saint-Etienne, France
3 Laboratoire de modélisation en mécanique-CNRS UMR 7607, Université Pierre et Marie Curie-Paris 6, 8, rue du Capitaine Scott, 75015 Paris, France
@article{CRMECA_2003__331_9_609_0,
     author = {Auder Ainser and Delphine Dupuy and Gregory P. Panasenko and Ivan Sirakov},
     title = {Flow in wavy tube structure: asymptotic analysis and numerical simulation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {609--615},
     publisher = {Elsevier},
     volume = {331},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00131-1},
     language = {en},
}
TY  - JOUR
AU  - Auder Ainser
AU  - Delphine Dupuy
AU  - Gregory P. Panasenko
AU  - Ivan Sirakov
TI  - Flow in wavy tube structure: asymptotic analysis and numerical simulation
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 609
EP  - 615
VL  - 331
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00131-1
LA  - en
ID  - CRMECA_2003__331_9_609_0
ER  - 
%0 Journal Article
%A Auder Ainser
%A Delphine Dupuy
%A Gregory P. Panasenko
%A Ivan Sirakov
%T Flow in wavy tube structure: asymptotic analysis and numerical simulation
%J Comptes Rendus. Mécanique
%D 2003
%P 609-615
%V 331
%N 9
%I Elsevier
%R 10.1016/S1631-0721(03)00131-1
%G en
%F CRMECA_2003__331_9_609_0
Auder Ainser; Delphine Dupuy; Gregory P. Panasenko; Ivan Sirakov. Flow in wavy tube structure: asymptotic analysis and numerical simulation. Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 609-615. doi : 10.1016/S1631-0721(03)00131-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00131-1/

[1] S.A. Nazarov Asymptotic solution of the Navier–Stokes problem on the flow in thin layer fluid, Siberian Math. J., Volume 31 (1990), pp. 296-307

[2] A. Bourgeat; E. Marusić-Paloka Nonlinear effects for flow in periodically constricted channel caused by high injection rate, Math. Models Methods Appl. Sci., Volume 8 (1998) no. 3, pp. 379-405

[3] F. Blanc; O. Gipouloux; G.P. Panasenko; A.M. Zine Asymptotic analysis and partial asymptotic decomposition of domain for Stokes equation in tube structure, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378

[4] G.P. Panasenko Asymptotic partial decomposition of variational problems, C. R. Acad. Sci. Paris, Sér. IIb, Volume 327 (1999), pp. 1185-1190

[5] R. Temam Navier–Stokes Equations, North-Holland, 1984

[6] G.P. Galdi An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Springer, 1984

[7] S.A. Nazarov; M. Specovius-Neugebauer Approximation of unbounded domains by bounded domains. Boundary value problems for Lamé operator, St. Petersburg Math. J., Volume 8 (1997) no. 5, pp. 879-912

[8] H.A. van der Vorst; Bi-CGSTAB A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetrical linear systems, SIAM J. Sci. Statist. Comput., Volume 13 (1992), pp. 631-644

Cited by Sources:

Comments - Policy