[Extension de la loi de Kida en turbulence]
On étend le domaine de validité de la loi de Kida d'indice de stabilité α=1,65 et de paramètre d'intermittence μ=0,2 à une nouvelle gamme de nombre de Reynolds. Cette loi décrit les intermittences en turbulence pleinement développée ou plus précisément la distribution de densité de probabilité de la dissipation de la turbulence. On utilise les résultats des mesures des coefficients d'hyper-aplatissement d'ordre 4, 5 et 6 des incréments de vitesse turbulente issues de précédentes études expérimentales et numériques. Nous montrons que la variation en loi de puissance de ces coefficients avec le nombre de Reynolds construit sur la micro-échelle de Taylor λ peut être ajustée pour Reλ compris entre 35 et 750 à l'aide d'une loi log-stable d'indice de stabilité α=1,65 et de paramètre d'intermittence μ=0,21.
We extend the validity range of Kida's log-stable law of stability index α=1.65 and intermittency parameter μ=0.2 to a new range of Reynolds number. This law describes intermittencies in fully developed turbulent flows or more precisely the p.d.f. of turbulence dissipation. Former measurements of the hyper-flatness factors of order 4, 5, 6 of turbulent velocity increments, coming from both experimental works and numerical simulations are used. We show that the power-law variation of these hyper-flatness factors with Taylor scale based Reynolds numbers Reλ can be fitted, for Reλ ranging from 35 to 750, by a log-stable law of stability index α=1.65 and intermittency parameter μ=0.21.
Accepté le :
Publié le :
Mot clés : Turbulence, Intermittence, Théorie de la cascade, Distribution log-Lévy
Nicolas Rimbert 1 ; Olivier Séro-Guillaume 1
@article{CRMECA_2003__331_11_775_0, author = {Nicolas Rimbert and Olivier S\'ero-Guillaume}, title = {Extension of the {Kida} law in turbulence}, journal = {Comptes Rendus. M\'ecanique}, pages = {775--782}, publisher = {Elsevier}, volume = {331}, number = {11}, year = {2003}, doi = {10.1016/S1631-0721(03)00143-8}, language = {en}, }
Nicolas Rimbert; Olivier Séro-Guillaume. Extension of the Kida law in turbulence. Comptes Rendus. Mécanique, Volume 331 (2003) no. 11, pp. 775-782. doi : 10.1016/S1631-0721(03)00143-8. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00143-8/
[1] Log-stable distribution and intermittency of turbulence, J. Phys. Soc. Japan, Volume 60 (1991) no. 1, pp. 5-8
[2] Some specific features of atmospheric turbulence, J. Fluid Mech., Volume 13 (1961), pp. 77-81
[3] A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., Volume 13 (1962), pp. 82-85
[4] On the logarithmically normal law of distribution of the size of particles under pulverization, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 99-101
[5] Infinitely divisible distributions in turbulence, Phys. Rev. E, Volume 50 (1994), pp. 50-52
[6] Fully developed turbulence: a unifying point of view, J. Phys. II (France), Volume 5 (1995), pp. 895-899
[7] Multifractal cascade dynamics and turbulent intermittency, Fractals, Volume 5 (1997) no. 3, pp. 427-471
[8] High-order velocity structure function in turbulent shear flows, J. Fluid Mech., Volume 140 (1984) no. 63
[9] Log-stable distribution in turbulence, Fluid Dyn. Res., Volume 8 (1991), pp. 135-138
[10] Some statistical properties of small scale turbulence in an atmospheric boundary layer, J. Fluid Mech., Volume 41 (1970), pp. 141-152
[11] Higher-order derivative correlations and the alignment of small-scale structure in isotropic numerical turbulence, J. Fluid Mech., Volume 153 (1985), pp. 31-58
[12] Velocity gradient distributions in fully developed turbulence: an experimental study, Phys. Fluids, Volume 9 (1997) no. 12, pp. 3843-3850
[13] Transition at dissipative scales in large-Reynolds-number turbulence, Phys. Rev. E, Volume 65 (2002), p. 066301
[14] Stable Non-Gaussian Random Processes, Chapman & Hall, 1994
[15] , Statistical Fluid Mechanics, 2, MIT Press, 1987
[16] A First Course in Turbulence, MIT Press, 1972
Cité par Sources :
Commentaires - Politique