Comptes Rendus
Viscoplastic behaviour of steels during phase transformations
[Comportement viscoplastique des aciers en cours de transformation de phase]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 587-594.

La contribution à la plasticité de transformation des aciers due au mécanisme dit de Greenwood–Johnson est souvent décrite à l'aide du modèle de Leblond et coll. Ce modèle faisait l'hypothèse d'un comportement purement plastique. On l'étend ici en incorporant les effets visqueux, présents lors de certaines transformations, particulièrement à haute température. Les prédictions des modèles original et étendu sont comparées à des résultats expérimentaux pour un matériau pour lequel la seconde contribution à la plasticité de transformation, due au mécanisme dit de Magee, est connue pour être négligeable, et l'on montre que l'incorporation des effets visqueux dans le modèle en améliore significativement les prédictions.

That contribution to transformation plasticity of steels arising from the so-called Greenwood–Johnson mechanism is often described using the model developed by Leblond and coworkers. This model made the assumption of purely plastic behaviour. It is extended here to incorporate viscous effects, which are present during some transformations, especially at high temperatures. The predictions of the original and extended models are compared to experimental results for a material for which the second contribution to transformation plasticity, due to the so-called Magee mechanism, is known to be negligible, and it is shown that the incorporation of viscous effects into the model significantly improves its predictions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(03)00147-5
Keywords: Solids and structures, Transformation plasticity, Viscoplasticity, Greenwood–Johnson mechanism, Modelling, Satoh test
Mots-clés : Solides et structures, Plasticité de transformation, Viscoplasticité, Mécanisme de Greenwood–Johnson, Modélisation, Essai Satoh

Yannick Vincent 1 ; Jean-Michel Bergheau 2 ; Jean-Baptiste Leblond 3

1 URGC, INSA, 20, avenue Albert Einstein, 69621 Villeurbanne cedex, France
2 LTDS, UMR 5513 CNRS/ENISE, 58, rue Jean Parot, 42023 Saint Étienne cedex 2, France
3 LMM, UMR 7607 CNRS/Université Paris VI, 8, rue du Capitaine Scott, 75015 Paris, France
@article{CRMECA_2003__331_9_587_0,
     author = {Yannick Vincent and Jean-Michel Bergheau and Jean-Baptiste Leblond},
     title = {Viscoplastic behaviour of steels during phase transformations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {587--594},
     publisher = {Elsevier},
     volume = {331},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0721(03)00147-5},
     language = {en},
}
TY  - JOUR
AU  - Yannick Vincent
AU  - Jean-Michel Bergheau
AU  - Jean-Baptiste Leblond
TI  - Viscoplastic behaviour of steels during phase transformations
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 587
EP  - 594
VL  - 331
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0721(03)00147-5
LA  - en
ID  - CRMECA_2003__331_9_587_0
ER  - 
%0 Journal Article
%A Yannick Vincent
%A Jean-Michel Bergheau
%A Jean-Baptiste Leblond
%T Viscoplastic behaviour of steels during phase transformations
%J Comptes Rendus. Mécanique
%D 2003
%P 587-594
%V 331
%N 9
%I Elsevier
%R 10.1016/S1631-0721(03)00147-5
%G en
%F CRMECA_2003__331_9_587_0
Yannick Vincent; Jean-Michel Bergheau; Jean-Baptiste Leblond. Viscoplastic behaviour of steels during phase transformations. Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 587-594. doi : 10.1016/S1631-0721(03)00147-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00147-5/

[1] G.W. Greenwood; R.H. Johnson The deformation of metals under small stresses during phase transformation, Proc. Roy. Soc., Volume 283 (1965), pp. 403-422

[2] C.L. Magee, Transformation kinetics, microplasticity and ageing of martensite in Fe-31Ni, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, USA, 1966

[3] J.B. Leblond; G. Mottet; J.C. Devaux A theoretical and numerical approach to the plastic behaviour of steels during phase transformations – I. Derivation of general relations, J. Mech. Phys. Solids, Volume 34 (1986), pp. 395-409

[4] J.B. Leblond; G. Mottet; J.C. Devaux A theoretical and numerical approach to the plastic behaviour of steels during phase transformations – II. Study of classical plasticity for ideal-plastic phases, J. Mech. Phys. Solids, Volume 34 (1986), pp. 411-432

[5] J.B. Leblond; J. Devaux; J.C. Devaux Mathematical modelling of transformation plasticity in steels – I. Case of ideal-plastic phases, Int. J. Plasticity, Volume 5 (1989), pp. 551-572

[6] J.B. Leblond Mathematical modelling of transformation plasticity in steels – II. Coupling with strain hardening phenomena, Int. J. Plasticity, Volume 5 (1989), pp. 573-591

[7] Y. Desalos, Comportement dilatométrique et mécanique de l'austénite métastable d'un acier A533, Rapport IRSID no 95349401 MET 44, 1981

[8] N. Cavallo, Contribution à la validation expérimentale de modèles décrivant la ZAT lors d'une opération de soudage, Thèse de Doctorat, INSA Lyon, 1998

[9] L. Taleb, Sur le comportement thermomécanique des matériaux et des structures métalliques, Mémoire d'Habilitation à Diriger des Recherches, Université de Lyon I, 1999

[10] S. Grostabussiat, Conséquences mécaniques des transformations structurales dans les alliages ferreux, Thèse de Doctorat, INSA Lyon, 2000

[11] M. Coret, Étude expérimentale et simulation de la plasticité de transformation et du comportement multiphase de l'acier de cuve 16MND5 sous chargement multiaxial anisotherme, Thèse de Doctorat, École Normale Supérieure de Cachan, 2001

[12] Y. Vincent, Simulation numérique des conséquences métallurgiques et mécaniques induites par une opération de soudage – Acier 16MND5, Thèse de Doctorat, INSA Lyon, 2001

[13] D. Bru; J. Devaux; J.M. Bergheau; D. Pont Influence of material properties at high temperatures on the modelling of welding residual stress and deformation state (H. Cerjak, ed.), Mathematical Modelling of Weld Phenomena 3, The Institute of Materials, 1996, pp. 456-463

[14] J.B. Leblond; D. Pont; J. Devaux; D. Bru; J.M. Bergheau Metallurgical and mechanical consequences of phase transformations in numerical simulations of welding processes (L. Karlsson et al., eds.), Modeling in Welding, Hot Powder Forming and Casting, ASM International, 1997, pp. 61-89

[15] M. Cherkaoui; M. Berveiller; X. Lemoine Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, Int. J. Plasticity, Volume 16 (2000), pp. 1215-1241

[16] K. Satoh Transient thermal stresses of weld-affected zone by both-ends-fixed bar analogy, Trans. Jap. Welding Soc., Volume 3 (1972), pp. 125-134

  • Shahul Hameed Nambiyankulam Hussain; Daniel Weisz-Patrault; Benoit Appolaire; Sabine Denis; Amico Settefrati Upscaling transformation plasticity using full field fast Fourier transform simulations of polycrystals undergoing phase transformations under applied loads, International Journal of Solids and Structures, Volume 315 (2025), p. 113337 | DOI:10.1016/j.ijsolstr.2025.113337
  • Julien Teixeira; Karthikeyan Jeyabalan; Guillaume Geandier; Jacky Dulcy; Benoît Denand; Maria-Rita Chini; Simon D. Catteau; Marc Courteaux; Sabine Denis In situ HEXRD experimental study and prediction of microstructures and internal stresses during heat treatment of carburized and carbonitrided low-alloyed steels, Acta Materialia, Volume 275 (2024), p. 120065 | DOI:10.1016/j.actamat.2024.120065
  • Youssri El Majaty; Le-Hung Tran; Jean-Baptiste Leblond; Renald Brenner Modeling the effects of morphological anisotropy in transformation plasticity of metals and alloys, International Journal of Solids and Structures, Volume 282 (2023), p. 112447 | DOI:10.1016/j.ijsolstr.2023.112447
  • Youssri El Majaty; Renald Brenner; Jean-Baptiste Leblond FFT-based micromechanical simulations of transformation plasticity. Comparison with a limit-analysis-based theory, European Journal of Mechanics - A/Solids, Volume 86 (2021), p. 104152 | DOI:10.1016/j.euromechsol.2020.104152
  • Youssri El Majaty; Jean-Baptiste Leblond; Djimedo Kondo A novel treatment of Greenwood–Johnson’s mechanism of transformation plasticity - Case of spherical growth of nuclei of daughter-phase, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), p. 175 | DOI:10.1016/j.jmps.2018.07.014
  • E. Cottier; P. Anglade; A. Brosse; E. Feulvarch Fast 3D simulation of a single-pass steel girth weld, Mechanics Industry, Volume 17 (2016) no. 4, p. 401 | DOI:10.1051/meca/2015074
  • C. Simsir Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking, Steel Heat Treating Technologies (2014), p. 409 | DOI:10.31399/asm.hb.v04b.a0005950
  • Eric Feulvarch; Mickael Fontaine; Jean-Michel Bergheau XFEM investigation of a crack path in residual stresses resulting from quenching, Finite Elements in Analysis and Design, Volume 75 (2013), p. 62 | DOI:10.1016/j.finel.2013.07.005
  • C. Seang; A.K. David; E. Ragneau Nd:YAG Laser Welding of Sheet Metal Assembly: Transformation Induced Volume Strain Affect on Elastoplastic Model, Physics Procedia, Volume 41 (2013), p. 448 | DOI:10.1016/j.phpro.2013.03.101
  • S. Bökenheide; M. Wolff; M. Dalgiç; D. Lammers; T. Linke Creep, phase transformations and transformation‐induced plasticity of 100Cr6 steel during heating, Materialwissenschaft und Werkstofftechnik, Volume 43 (2012) no. 1-2, p. 143 | DOI:10.1002/mawe.201100902
  • E Feulvarch; V Robin; J M Bergheau Thermometallurgical and mechanical modelling of welding – application to multipass dissimilar metal girth welds, Science and Technology of Welding and Joining, Volume 16 (2011) no. 3, p. 221 | DOI:10.1179/1362171811y.0000000008
  • M. Wolff; M. Böhm; B. Suhr Comparison of different approaches to transformation‐induced plasticity in steel, Materialwissenschaft und Werkstofftechnik, Volume 40 (2009) no. 5-6, p. 454 | DOI:10.1002/mawe.200900476
  • H. M. Aarbogh; M. M'Hamdi; A. Mo; H. G. Fjær Simplified method for establishing constitutive equations and flow stress data for welding stress modelling, Science and Technology of Welding and Joining, Volume 13 (2008) no. 8, p. 705 | DOI:10.1179/174329308x349539
  • References, Computational Welding Mechanics (2007), p. 198 | DOI:10.1533/9781845693558.198
  • Roland Fortunier; Jean-Michel Bergheau Modelling of Heat Transfers, Phase Changes and Mechanical Behaviour during Welding, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 231 | DOI:10.3166/reef.13.231-245
  • Lionel Depradeux; Jean-François Jullien 2D and 3D Numerical Simulations of TIG Welding of a 316L Steel Sheet, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 269 | DOI:10.3166/reef.13.269-288
  • Frédéric Faure; Jean-Michel Bergheau; Jean-Baptiste Leblond; Bruno Souloumiac New Methods for Numerical Simulation of Welding of Large Thin Structures, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 289 | DOI:10.3166/reef.13.289-311
  • Philippe Gilles; Denis Pont; Elisabeth Keim; Josette Devaux Framatome-ANP Experience in Numerical Simulation of Welding, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 343 | DOI:10.3166/reef.13.343-375
  • J.-M. Bergheau; Y. Vincent; J.-B. Leblond; J.-F. Jullien Viscoplastic behaviour of steels during welding, Science and Technology of Welding and Joining, Volume 9 (2004) no. 4, p. 323 | DOI:10.1179/136217104225021689

Cité par 19 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: