[Comportement viscoplastique des aciers en cours de transformation de phase]
La contribution à la plasticité de transformation des aciers due au mécanisme dit de Greenwood–Johnson est souvent décrite à l'aide du modèle de Leblond et coll. Ce modèle faisait l'hypothèse d'un comportement purement plastique. On l'étend ici en incorporant les effets visqueux, présents lors de certaines transformations, particulièrement à haute température. Les prédictions des modèles original et étendu sont comparées à des résultats expérimentaux pour un matériau pour lequel la seconde contribution à la plasticité de transformation, due au mécanisme dit de Magee, est connue pour être négligeable, et l'on montre que l'incorporation des effets visqueux dans le modèle en améliore significativement les prédictions.
That contribution to transformation plasticity of steels arising from the so-called Greenwood–Johnson mechanism is often described using the model developed by Leblond and coworkers. This model made the assumption of purely plastic behaviour. It is extended here to incorporate viscous effects, which are present during some transformations, especially at high temperatures. The predictions of the original and extended models are compared to experimental results for a material for which the second contribution to transformation plasticity, due to the so-called Magee mechanism, is known to be negligible, and it is shown that the incorporation of viscous effects into the model significantly improves its predictions.
Accepté le :
Publié le :
Mots-clés : Solides et structures, Plasticité de transformation, Viscoplasticité, Mécanisme de Greenwood–Johnson, Modélisation, Essai Satoh
Yannick Vincent 1 ; Jean-Michel Bergheau 2 ; Jean-Baptiste Leblond 3
@article{CRMECA_2003__331_9_587_0, author = {Yannick Vincent and Jean-Michel Bergheau and Jean-Baptiste Leblond}, title = {Viscoplastic behaviour of steels during phase transformations}, journal = {Comptes Rendus. M\'ecanique}, pages = {587--594}, publisher = {Elsevier}, volume = {331}, number = {9}, year = {2003}, doi = {10.1016/S1631-0721(03)00147-5}, language = {en}, }
TY - JOUR AU - Yannick Vincent AU - Jean-Michel Bergheau AU - Jean-Baptiste Leblond TI - Viscoplastic behaviour of steels during phase transformations JO - Comptes Rendus. Mécanique PY - 2003 SP - 587 EP - 594 VL - 331 IS - 9 PB - Elsevier DO - 10.1016/S1631-0721(03)00147-5 LA - en ID - CRMECA_2003__331_9_587_0 ER -
Yannick Vincent; Jean-Michel Bergheau; Jean-Baptiste Leblond. Viscoplastic behaviour of steels during phase transformations. Comptes Rendus. Mécanique, Volume 331 (2003) no. 9, pp. 587-594. doi : 10.1016/S1631-0721(03)00147-5. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(03)00147-5/
[1] The deformation of metals under small stresses during phase transformation, Proc. Roy. Soc., Volume 283 (1965), pp. 403-422
[2] C.L. Magee, Transformation kinetics, microplasticity and ageing of martensite in Fe-31Ni, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, USA, 1966
[3] A theoretical and numerical approach to the plastic behaviour of steels during phase transformations – I. Derivation of general relations, J. Mech. Phys. Solids, Volume 34 (1986), pp. 395-409
[4] A theoretical and numerical approach to the plastic behaviour of steels during phase transformations – II. Study of classical plasticity for ideal-plastic phases, J. Mech. Phys. Solids, Volume 34 (1986), pp. 411-432
[5] Mathematical modelling of transformation plasticity in steels – I. Case of ideal-plastic phases, Int. J. Plasticity, Volume 5 (1989), pp. 551-572
[6] Mathematical modelling of transformation plasticity in steels – II. Coupling with strain hardening phenomena, Int. J. Plasticity, Volume 5 (1989), pp. 573-591
[7] Y. Desalos, Comportement dilatométrique et mécanique de l'austénite métastable d'un acier A533, Rapport IRSID no 95349401 MET 44, 1981
[8] N. Cavallo, Contribution à la validation expérimentale de modèles décrivant la ZAT lors d'une opération de soudage, Thèse de Doctorat, INSA Lyon, 1998
[9] L. Taleb, Sur le comportement thermomécanique des matériaux et des structures métalliques, Mémoire d'Habilitation à Diriger des Recherches, Université de Lyon I, 1999
[10] S. Grostabussiat, Conséquences mécaniques des transformations structurales dans les alliages ferreux, Thèse de Doctorat, INSA Lyon, 2000
[11] M. Coret, Étude expérimentale et simulation de la plasticité de transformation et du comportement multiphase de l'acier de cuve 16MND5 sous chargement multiaxial anisotherme, Thèse de Doctorat, École Normale Supérieure de Cachan, 2001
[12] Y. Vincent, Simulation numérique des conséquences métallurgiques et mécaniques induites par une opération de soudage – Acier 16MND5, Thèse de Doctorat, INSA Lyon, 2001
[13] Influence of material properties at high temperatures on the modelling of welding residual stress and deformation state (H. Cerjak, ed.), Mathematical Modelling of Weld Phenomena 3, The Institute of Materials, 1996, pp. 456-463
[14] Metallurgical and mechanical consequences of phase transformations in numerical simulations of welding processes (L. Karlsson et al., eds.), Modeling in Welding, Hot Powder Forming and Casting, ASM International, 1997, pp. 61-89
[15] Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, Int. J. Plasticity, Volume 16 (2000), pp. 1215-1241
[16] Transient thermal stresses of weld-affected zone by both-ends-fixed bar analogy, Trans. Jap. Welding Soc., Volume 3 (1972), pp. 125-134
- Upscaling transformation plasticity using full field fast Fourier transform simulations of polycrystals undergoing phase transformations under applied loads, International Journal of Solids and Structures, Volume 315 (2025), p. 113337 | DOI:10.1016/j.ijsolstr.2025.113337
- In situ HEXRD experimental study and prediction of microstructures and internal stresses during heat treatment of carburized and carbonitrided low-alloyed steels, Acta Materialia, Volume 275 (2024), p. 120065 | DOI:10.1016/j.actamat.2024.120065
- Modeling the effects of morphological anisotropy in transformation plasticity of metals and alloys, International Journal of Solids and Structures, Volume 282 (2023), p. 112447 | DOI:10.1016/j.ijsolstr.2023.112447
- FFT-based micromechanical simulations of transformation plasticity. Comparison with a limit-analysis-based theory, European Journal of Mechanics - A/Solids, Volume 86 (2021), p. 104152 | DOI:10.1016/j.euromechsol.2020.104152
- A novel treatment of Greenwood–Johnson’s mechanism of transformation plasticity - Case of spherical growth of nuclei of daughter-phase, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), p. 175 | DOI:10.1016/j.jmps.2018.07.014
- Fast 3D simulation of a single-pass steel girth weld, Mechanics Industry, Volume 17 (2016) no. 4, p. 401 | DOI:10.1051/meca/2015074
- Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking, Steel Heat Treating Technologies (2014), p. 409 | DOI:10.31399/asm.hb.v04b.a0005950
- XFEM investigation of a crack path in residual stresses resulting from quenching, Finite Elements in Analysis and Design, Volume 75 (2013), p. 62 | DOI:10.1016/j.finel.2013.07.005
- Nd:YAG Laser Welding of Sheet Metal Assembly: Transformation Induced Volume Strain Affect on Elastoplastic Model, Physics Procedia, Volume 41 (2013), p. 448 | DOI:10.1016/j.phpro.2013.03.101
- Creep, phase transformations and transformation‐induced plasticity of 100Cr6 steel during heating, Materialwissenschaft und Werkstofftechnik, Volume 43 (2012) no. 1-2, p. 143 | DOI:10.1002/mawe.201100902
- Thermometallurgical and mechanical modelling of welding – application to multipass dissimilar metal girth welds, Science and Technology of Welding and Joining, Volume 16 (2011) no. 3, p. 221 | DOI:10.1179/1362171811y.0000000008
- Comparison of different approaches to transformation‐induced plasticity in steel, Materialwissenschaft und Werkstofftechnik, Volume 40 (2009) no. 5-6, p. 454 | DOI:10.1002/mawe.200900476
- Simplified method for establishing constitutive equations and flow stress data for welding stress modelling, Science and Technology of Welding and Joining, Volume 13 (2008) no. 8, p. 705 | DOI:10.1179/174329308x349539
- References, Computational Welding Mechanics (2007), p. 198 | DOI:10.1533/9781845693558.198
- Modelling of Heat Transfers, Phase Changes and Mechanical Behaviour during Welding, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 231 | DOI:10.3166/reef.13.231-245
- 2D and 3D Numerical Simulations of TIG Welding of a 316L Steel Sheet, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 269 | DOI:10.3166/reef.13.269-288
- New Methods for Numerical Simulation of Welding of Large Thin Structures, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 289 | DOI:10.3166/reef.13.289-311
- Framatome-ANP Experience in Numerical Simulation of Welding, Revue Européenne des Éléments Finis, Volume 13 (2004) no. 3-4, p. 343 | DOI:10.3166/reef.13.343-375
- Viscoplastic behaviour of steels during welding, Science and Technology of Welding and Joining, Volume 9 (2004) no. 4, p. 323 | DOI:10.1179/136217104225021689
Cité par 19 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier