Comptes Rendus
Self adjoint extensions of differential operators in application to shape optimization
Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 667-672.

Two approaches are proposed for the modelling of problems with small geometrical defects. The first approach is based on the theory of self adjoint extensions of differential operators. In the second approach function spaces with separated asymptotics and point asymptotic conditions are introduced, and the variational formulation is established. For both approaches the accuracy estimates are derived. Finally, the spectral problems are considered and the error estimates for eigenvalues are given.

On propose deux approches permettant de modéliser des problèmes avec des singularités géométriques. La première approche repose sur des extensions autoadjointes d'opérateurs différentiels avec conditions asymptotiques. Dans la seconde approche, on introduit des espaces fonctionnels avec développements asymptotiques séparés puis on établit la formulation variationnelle. On obtient des estimations montrant que la même précision est atteinte pour ces deux approches. Enfin, on considère des problèmes spectraux et on donne des estimations pour les valeurs propres.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2003.07.003
Keywords: Computational solid mechanics, Self adjoint extensions, Variational formulation, Error estimates
Mot clés : Mécanique des solides numérique, Extensions autoadjointes, Formulation variationnelle, Estimations d'erreur

Serguei A. Nazarov 1; Jan Sokolowski 2

1 Institute of Mechanical Engineering Problems, Laboratory of Mathematical Methods, Russian Academy of Sciences, V.O. Bol'shoi 61, 199178 St. Petersburg, Russia
2 Institut Elie Cartan, laboratoire de mathématiques, Universite Henri Poincaré, Nancy I, BP 239, 54506 Vandoeuvre-les-Nancy cedex, France
@article{CRMECA_2003__331_10_667_0,
     author = {Serguei A. Nazarov and Jan Sokolowski},
     title = {Self adjoint extensions of differential operators in application to shape optimization},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {667--672},
     publisher = {Elsevier},
     volume = {331},
     number = {10},
     year = {2003},
     doi = {10.1016/j.crme.2003.07.003},
     language = {en},
}
TY  - JOUR
AU  - Serguei A. Nazarov
AU  - Jan Sokolowski
TI  - Self adjoint extensions of differential operators in application to shape optimization
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 667
EP  - 672
VL  - 331
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crme.2003.07.003
LA  - en
ID  - CRMECA_2003__331_10_667_0
ER  - 
%0 Journal Article
%A Serguei A. Nazarov
%A Jan Sokolowski
%T Self adjoint extensions of differential operators in application to shape optimization
%J Comptes Rendus. Mécanique
%D 2003
%P 667-672
%V 331
%N 10
%I Elsevier
%R 10.1016/j.crme.2003.07.003
%G en
%F CRMECA_2003__331_10_667_0
Serguei A. Nazarov; Jan Sokolowski. Self adjoint extensions of differential operators in application to shape optimization. Comptes Rendus. Mécanique, Volume 331 (2003) no. 10, pp. 667-672. doi : 10.1016/j.crme.2003.07.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.07.003/

[1] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskii Asymptotics of Solutions to Elliptic Boundary-Value Problems under a Singular Perturbation of the Domain, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, Vols. 1, 2, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vols. 1, 2, Tbilisi University, Tbilisi, 1981 (in Russian)

[2] D. Leguillon; É. Sanches-Palencia Computation of Singular Solutions in Elliptic Problems and Elasticity, Masson, Paris, 1987

[3] A.M. Il'in Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monographs, 102, American Mathematical Society, 1992

[4] A.M. Il'in A boundary value problem for the elliptic equation of second order in a domain with a narrow slit. I. The two-dimensional case, Mat. Sb., Volume 99 (1976) no. 141, pp. 514-537 (English translation: Math. USSR-Sb., 28, 1976)

[5] G. Pólya; G. Szegö Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, NJ, 1951

[6] F.A. Berezin; L.D. Faddeev Remark on the Schrödinger equation with singular potential, Dokl. Akad. Nauk SSSR, Volume 137 (1961), pp. 1011-1014 (English translation: Soviet Math. Dokl., 2, 1961, pp. 372-375)

[7] B.S. Pavlov The theory of extension and explicitly soluble models, Uspekhi Mat. Nauk, Volume 42 (1987) no. 6, pp. 99-131 (English translation: Soviet Math. Surveys, 42, 6, 1987, pp. 127-168)

[8] S.A. Nazarov; B.A. Plamenevsky Elliptic Problems in Domains with Piecewise Smooth Boundaries, de Gruyter Exp. Math., 13, Walter de Gruyter, 1994

[9] S.A. Nazarov Asymptotic conditions at points, self adjoint extensions of operators and the method of matched asymptotic expansions, Trudy St.-Petersburg Mat. Obshch., Volume 5 (1996), pp. 112-183 (in Russian) English translation: Trans. Amer. Math. Soc. Ser. 2, 193, 1999, pp. 77-126

[10] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevskii Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes, Izv. Akad. Nauk SSSR. Ser. Mat., Volume 48 (1984) no. 2, pp. 347-371 (English translation: Math. USSR-Izv., 24, 1985, pp. 321-345)

[11] Amer. Math. Soc. Transl. Ser. 2, Vol. 199, American Mathematical Society, Providence, RI

[12] J. Sokołowski; A. Żochowski On topological derivative in shape optimization, SIAM J. Control Optim., Volume 37 (1999) no. 4, pp. 1251-1272

[13] S.A. Nazarov; J. Sokolowski Asymptotic analysis of shape functionals, J. Math. Pures Appl., Volume 82 (2003) no. 2, pp. 125-196

Cited by Sources:

Comments - Policy