Comptes Rendus
Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine
[On the ‘isotropic’ and ‘anisotropic’ approximations of the tangent operator in the incremental tangent and affine methods]
Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 857-864.

Three localisation rules, TFA, the incremental tangent, and the affine method, are recalled and evaluated in the context of the elastoplastic micromechanical analysis of heterogeneous materials, composites or polycrystals. With the help of a severe example, it is shown how methods based on the complete anisotropic elastoplastic tangent operator yield very stiff predictions which are far from the reference solution; the same conclusion holds for the method using the elastic accommodation rule. On the other hand, using an isotropic form of the tangent operator delivers much better responses. The reasons for such differences are discussed, together with possible justifications for the choice of the isotropic form.

Trois règles de localisation, TFA, la méthode tangente incrémentale et la méthode affine, sont rappelées et évaluées dans le contexte de l'analyse micromécanique de l'élastoplasticité des matériaux hétérogènes, composites ou polycristaux. A l'aide d'un exemple sévère, on montre comment les prédictions issues des méthodes basées sur l'expression anisotrope complète de l'opérateur élastoplastique tangent sont très raides et éloignées de la réponse de référence, tout comme pour la méthode basée sur la règle d'accommodation élastique. Au contraire, en utilisant une forme isotrope de l'opérateur tangent, on obtient des réponses bien meilleures. Sont alors discutées les raisons d'une telle différence et les justifications possibles du choix de la forme isotrope.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2003.08.002
Mot clés : Mécanique des solides numérique, TFA, Méthode tangente incrémentale, Méthode affine, Analyse micromécanique de l'élastoplasticité
Keywords: Computation solid mechanics, TFA, Incremental tangent method, Affine method, Elastoplastic micromechanical analysis

Jean-Louis Chaboche 1; Pascale Kanouté 1

1 ONERA, BP 72, 92322 Châtillon cedex, France
@article{CRMECA_2003__331_12_857_0,
     author = {Jean-Louis Chaboche and Pascale Kanout\'e},
     title = {Sur les approximations {\guillemotleft} isotrope {\guillemotright} et {\guillemotleft} anisotrope {\guillemotright} de l'op\'erateur tangent pour les m\'ethodes tangentes incr\'ementale et affine},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {857--864},
     publisher = {Elsevier},
     volume = {331},
     number = {12},
     year = {2003},
     doi = {10.1016/j.crme.2003.08.002},
     language = {fr},
}
TY  - JOUR
AU  - Jean-Louis Chaboche
AU  - Pascale Kanouté
TI  - Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine
JO  - Comptes Rendus. Mécanique
PY  - 2003
SP  - 857
EP  - 864
VL  - 331
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2003.08.002
LA  - fr
ID  - CRMECA_2003__331_12_857_0
ER  - 
%0 Journal Article
%A Jean-Louis Chaboche
%A Pascale Kanouté
%T Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine
%J Comptes Rendus. Mécanique
%D 2003
%P 857-864
%V 331
%N 12
%I Elsevier
%R 10.1016/j.crme.2003.08.002
%G fr
%F CRMECA_2003__331_12_857_0
Jean-Louis Chaboche; Pascale Kanouté. Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine. Comptes Rendus. Mécanique, Volume 331 (2003) no. 12, pp. 857-864. doi : 10.1016/j.crme.2003.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.08.002/

[1] G. Dvorak Transformation field analysis of inelastic composite materials, Proc. Roy. Soc. London Ser. A, Volume 437 (1992), pp. 311-327

[2] G. Dvorak; Y. Bahei-el-Din; A. Wafa Implementation of the transformation field analysis for inelastic composite materials, Comput. Mech., Volume 14 (1994), pp. 201-228

[3] J.L. Chaboche; S. Kruch; J.J. Maire; T. Pottier Towards a micromechanics based inelastic and damage modeling of composites, Int. J. Plasticity, Volume 17 (2001), pp. 411-439

[4] G. Dvorak; Y. Benveniste On transformation strains and uniform fields in multiphase elastic media, Proc. Roy. Soc. London Ser. A, Volume 437 (1992), pp. 291-310

[5] R. Hill Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, Volume 13 (1965), pp. 89-101

[6] R. Masson; A. Zaoui Self-consistent estimates for the rate dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1543-1568

[7] R. Masson; M. Bornert; P. Suquet; A. Zaoui An affine formulation for the prediction od the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, Volume 48 (2000), pp. 1203-1227

[8] P. Suquet Effective properties of nonlinear composites (P. Suquet, ed.), Continuum Micromechanics, CISM Lectures Notes, 377, Springer-Verlag, 1997, pp. 197-264

[9] J. Michel; P. Suquet On the strength of composite materials: variational bounds and numerical aspects (M.P. Bendsoe; C. Mota-Soares, eds.), Topology Design of Structures, Kluwer Academic, 1993, pp. 355-374

[10] P. Ponte Castañeda A second-order theory for nonlinear composite materials, C. R. Acad. Sci. Paris, Ser. IIb, Volume 322 (1996), pp. 3-10

[11] M. Bornert Homogénéisation des milieux aléatoires : bornes et estimations (M. Bornert; T. Bretheau; P. Gilormini, eds.), Homogénéisation en Mécanique des Matériaux, Hermes Science, 2001, pp. 133-221

[12] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140

[13] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. Mater., Volume 21 (1973), pp. 597-629

[14] R.A. Lebensohn; C.N. Tomé A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals, Mater. Sci. Eng. A, Volume 175 (1994), p. 71

[15] M. Bornert; P. Ponte Castañeda Second-order estimates of the self-consistent type for viscoplastic polycrystals, Proc. Roy. Soc. London Ser. A, Volume 454 (1998), pp. 3035-3045

[16] M. Berveiller; A. Zaoui An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids, Volume 26 (1979), pp. 325-344

[17] P. Gilormini Insuffisance de l'extension classique du modèle auto-cohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Ser. IIb, Volume 320 (1995), pp. 115-122

[18] R. Brenner; O. Castelnau; P. Gilormini A modified affine theory for the overall properties of nonlinear composites, C. R. Acad. Sci. Paris, Ser. IIb, Volume 329 (2001), pp. 649-654

[19] J. Llorca; C. González A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage, J. Mech. Phys. Solids, Volume 48 (2000), pp. 675-692

[20] P. Kanouté; J.L. Chaboche Multiscale modelling of non linear behaviour of heterogeneous materials: comparison of recent homogenisation methods, IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engines, Marrakech, 2002

[21] M. Bornert, Personal communication, 2003

[22] A. Molinari; G.R. Canova; S. Ahzi A self consistent approach of the large deformation polycrystal viscoplasticity, Acta. Metall., Volume 35 (1987) no. 12, pp. 2983-2994

[23] P. Gilormini A critical evaluation of various nonlinear extensions of the self-consistent model (A. Pineau; A. Zaoui, eds.), Micromechanics of Plasticity and Damage of Multiphase Materials, Kluwer Academic, 1996, pp. 67-74

Cited by Sources:

Comments - Policy