Complex systems that can be described at the macroscopic level in terms of bilinear ODEs or bilinear reaction–diffusion equations are considered. The corresponding microscopic description at the level of stochastically interacting entities is defined. The mathematical relationships between these two descriptions are formulated. The solutions of bilinear macroscopic equations are approximated by stochastic (linear) semigroups and the order of approximation is given.
Nous considérons ici des systèmes complexes descrits au niveau macroscopique par des EDOs bilinéaires ou par des équations de réaction–diffusion bilinéaires. La description microscopique correspondante est définie. Les relations mathématiques entre les deux descriptions sont formulées. Les solutions des équations macroscopiques bilinéaires sont approximées par des semigroupes stochastiques (linéaires) et l'ordre d'approximation est donné.
Accepted:
Published online:
Mots-clés : Millieux continus, Systèmes complexes, EDO, Équations de réaction-diffusion, Semigroupes stochastiques
Mirosław Lachowicz 1
@article{CRMECA_2003__331_11_733_0, author = {Miros{\l}aw Lachowicz}, title = {From microscopic to macroscopic descriptions of complex systems}, journal = {Comptes Rendus. M\'ecanique}, pages = {733--738}, publisher = {Elsevier}, volume = {331}, number = {11}, year = {2003}, doi = {10.1016/j.crme.2003.09.003}, language = {en}, }
Mirosław Lachowicz. From microscopic to macroscopic descriptions of complex systems. Comptes Rendus. Mécanique, Volume 331 (2003) no. 11, pp. 733-738. doi : 10.1016/j.crme.2003.09.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.09.003/
[1] Singular Perturbation Methods for ODE, Springer, New York, 1991
[2] M. Lachowicz, On bilinear kinetic equations. Between micro and macro description of biological populations, Banach Center Publ., in press
[3] Chaos, Fractals, and Noise, Springer, New York, 1994
[4] Nonlocal bilinear equations. Equilibrium solutions and diffusive limit, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 1375-1390
[5] Population dynamics with stochastic interaction, Transport Theory Statist. Phys., Volume 24 (1995), pp. 431-443
[6] Generalized kinetic Boltzmann models: Mathematical structures and applications, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 571-596
[7] Kinetic equations modelling population dynamics, Transport Theory Statist. Phys., Volume 29 (2000), pp. 125-139
[8] On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl. Math., Volume 52 (1992), pp. 1442-1468
[9] From microscopic to macroscopic description for generalized kinetic models, Math. Models Methods Appl. Sci., Volume 12 (2002), pp. 985-1005
[10] A stochastic particle system modeling the Euler equation, Arch. Rational Mech. Anal., Volume 109 (1990), pp. 81-93
[11] M. Lachowicz, General population systems. Macroscopic limit of a class of stochastic semigroups, in press
[12] Describing competitive systems at the level of interacting individuals, Proceedings of the Eight National Conference on Applications of Mathematics in Biology and Medicine, Łajs, 25–28 September, 2002, pp. 95-100
Cited by Sources:
Comments - Policy