In this paper the mathematical macroscopic modeling of unsaturated water flow in a porous medium (soil) with highly permeable porous inclusions is presented. It is supposed that water flow in each sub domain can be described by the strongly non-linear Richards' equation. Gravity effects are considered. The upscaling process of this stiff problem is performed using the homogenization method of periodic structures with asymptotic expansions. The resulting non-linear macroscopic description is a one equation model, revealing the local equilibrium of the capillary pressure head. The effective water retention capacity was found to be the volume average of the water retention capacities of the two porous sub-domains. The effective conductivity tensor is obtained from a linear and non-stiff boundary value problem at the heterogeneity scale.
Nous étudions dans cette Note le modèle mathématique macroscopique de l'écoulement non-saturé d'eau dans un milieu poreux contenant des inclusions poreuses très conductrices. L'écoulement est décrit dans chaque milieu par l'équation fortement non-linéaire de Richards. La gravité est prise en considération. La macroscopisation de ce problème raide est conduite au moyen de la méthode d'homogénéisation de structures périodiques. Le modèle résultant à l'échelle macroscopique est un modèle non-linéaire à une équation qui traduit l'équilibre local de la pression capillaire. La rétention d'eau effective est la moyenne de volume des rétentions locales. Le tenseur effectif de conductivité est obtenu à partir de la solution d'un problème local linéaire non raide.
Accepted:
Published online:
Mots-clés : Milieux granulaires, Sols, Milieux poreux
Jolanta Lewandowska 1; Jean-Louis Auriault 2
@article{CRMECA_2004__332_1_91_0, author = {Jolanta Lewandowska and Jean-Louis Auriault}, title = {Modelling of unsaturated water flow in soils with highly permeable inclusions}, journal = {Comptes Rendus. M\'ecanique}, pages = {91--96}, publisher = {Elsevier}, volume = {332}, number = {1}, year = {2004}, doi = {10.1016/j.crme.2003.10.012}, language = {en}, }
TY - JOUR AU - Jolanta Lewandowska AU - Jean-Louis Auriault TI - Modelling of unsaturated water flow in soils with highly permeable inclusions JO - Comptes Rendus. Mécanique PY - 2004 SP - 91 EP - 96 VL - 332 IS - 1 PB - Elsevier DO - 10.1016/j.crme.2003.10.012 LA - en ID - CRMECA_2004__332_1_91_0 ER -
Jolanta Lewandowska; Jean-Louis Auriault. Modelling of unsaturated water flow in soils with highly permeable inclusions. Comptes Rendus. Mécanique, Volume 332 (2004) no. 1, pp. 91-96. doi : 10.1016/j.crme.2003.10.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2003.10.012/
[1] Filtration in a porous fissured rock: influence of the fissures connexity, Eur. J. Mech. B Fluids, Volume 4 (1990), pp. 309-327
[2] Macroscopic conductivity of vugular porous media, Transport in Porous Media, Volume 49 (2002), pp. 313-332
[3] Capillary conduction of liquids through porous medium, Physics, Volume 1 (1931), pp. 318-333
[4] Non-Homogeneous Media and Vibration Theory, Lecture Note in Phys., vol. 127, Springer-Verlag, Berlin, 1980
[5] Asymptotic Analysis for Periodic Structures, North-Holland, 1987
[6] Heterogeneous medium. Is an equivalent description possible?, Int. J. Engrg. Sci., Volume 29 (1991) no. 7, pp. 785-795
[7] Solute diffusion in fractured porous media with memory effects due to adsorption, C. R. Mécanique, Volume 330 (2002), pp. 879-884
Cited by Sources:
Comments - Policy