This paper describes the unsteady convective flow of a supercritical fluid in the Rayleigh–Bénard configuration. Two-dimensional earlier studies reported fast temperature equilibrium due to the piston effect and the development of a convective instability when the local Rayleigh number exceeds a critical value. In the present work, a high order 3D finite volume method has been developed and optimized, and to our knowledge, we show for the first time a three-dimensional convective instability in a supercritical fluid. Inspecting the time-evolution of temperature field patterns, we exhibit corner effects and a three-dimensional behavior of the flow.
Cet article décrit l'écoulement convectif instationnaire d'un fluide supercritique en configuration de Rayleigh–Bénard. Des études antérieures bidimensionnelles ont montré une homogénéisation rapide de la température par effet piston et le développement d'une instabilité convective lorsque le nombre de Rayleigh local dépasse une valeur critique. Dans le présent travail, une méthode de volumes finis 3D d'ordre élevé a été développée, et à notre connaissance, nous montrons pour la première fois une instabilité convective tridimensionnelle dans un fluide supercritique. En examinant l'évolution temporelle de la structure du champ thermique, nous mettons en évidence des effets de coins et un comportement tridimensionnel de l'écoulement.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Fluide supercritique, Configuration de Rayleigh–Bénard, Instabilité convective 3D, Effet piston
Gilbert Accary 1; Isabelle Raspo 1; Patrick Bontoux 1; Bernard Zappoli 2
@article{CRMECA_2004__332_3_209_0, author = {Gilbert Accary and Isabelle Raspo and Patrick Bontoux and Bernard Zappoli}, title = {Three-dimensional {Rayleigh{\textendash}B\'enard} instability in a supercritical fluid}, journal = {Comptes Rendus. M\'ecanique}, pages = {209--216}, publisher = {Elsevier}, volume = {332}, number = {3}, year = {2004}, doi = {10.1016/j.crme.2004.01.009}, language = {en}, }
TY - JOUR AU - Gilbert Accary AU - Isabelle Raspo AU - Patrick Bontoux AU - Bernard Zappoli TI - Three-dimensional Rayleigh–Bénard instability in a supercritical fluid JO - Comptes Rendus. Mécanique PY - 2004 SP - 209 EP - 216 VL - 332 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2004.01.009 LA - en ID - CRMECA_2004__332_3_209_0 ER -
%0 Journal Article %A Gilbert Accary %A Isabelle Raspo %A Patrick Bontoux %A Bernard Zappoli %T Three-dimensional Rayleigh–Bénard instability in a supercritical fluid %J Comptes Rendus. Mécanique %D 2004 %P 209-216 %V 332 %N 3 %I Elsevier %R 10.1016/j.crme.2004.01.009 %G en %F CRMECA_2004__332_3_209_0
Gilbert Accary; Isabelle Raspo; Patrick Bontoux; Bernard Zappoli. Three-dimensional Rayleigh–Bénard instability in a supercritical fluid. Comptes Rendus. Mécanique, Volume 332 (2004) no. 3, pp. 209-216. doi : 10.1016/j.crme.2004.01.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.01.009/
[1] The critical hump of Cv under microgravity, results from D-Spacelab experiment ‘Wärmekapazität’, Proceeding of the 6th European Symp. on Material Sci. under Microgravity Conditions, 1987, p. 109 (ESA SP-256)
[2] Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990), p. 2260
[3] Fast adiabatic equilibration in a single-component fluid near the liquid–vapor critical point, Phys. Rev. A, Volume 41 (1990), p. 2256
[4] Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990), p. 2224
[5] Rayleigh–Bénard convection near gas–liquid critical point, Phys. Rev. Lett., Volume 70 (1993), p. 3888
[6] Onset of convection in a very compressible fluid: the transient toward steady state, Phys. Rev. E, Volume 63 (2002), p. 056310
[7] Criteria for the commencement of convection in a liquid close to the critical point, High Temp. (USSR), Volume 8 (1970) no. 4, p. 754
[8] The onset of free convection near the liquid–vapour critical point. Part I: Stationary initial state, Physica D, Volume 126 (1999), p. 69
[9] Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid, J. Fluid Mech., Volume 316 (1996), p. 53
[10] Simulation of convective instabilities inside a supercritical fluid layer under Rayleigh–Bénard configuration, J. Chem. Phys., Volume 96 (1999), p. 1059
[11] Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below, J. Fluid Mech., Volume 442 (2001), p. 119
[12] Convective heat transport in compressible fluids, Phys. Rev. E, Volume 66 (2002), p. 016302
[13] Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980
[14] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Rep. SAND 82-8257, December, Sandia National Lab., USA, 1982, p. 52
[15] Assessment of higher-order upwind schemes incorporating FCT for convection-dominated problems, Numer. Heat Transfer B, Volume 27 (1995), p. 1
[16] Comparison of the Piso, Simpler, and Simplec algorithms fort he treatment of the pressure–velocity coupling in steady flow problems, Numer. Heat Transfer, Volume 10 (1986), p. 209
[17] Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994
[18] Solution of a stationary benchmark problem for natural convection with large temperature difference, Int. J. Therm. Sci., Volume 41 (2002), p. 428
[19] Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961
Cited by Sources:
Comments - Policy