Comptes Rendus
Three-dimensional Rayleigh–Bénard instability in a supercritical fluid
Comptes Rendus. Mécanique, Volume 332 (2004) no. 3, pp. 209-216.

This paper describes the unsteady convective flow of a supercritical fluid in the Rayleigh–Bénard configuration. Two-dimensional earlier studies reported fast temperature equilibrium due to the piston effect and the development of a convective instability when the local Rayleigh number exceeds a critical value. In the present work, a high order 3D finite volume method has been developed and optimized, and to our knowledge, we show for the first time a three-dimensional convective instability in a supercritical fluid. Inspecting the time-evolution of temperature field patterns, we exhibit corner effects and a three-dimensional behavior of the flow.

Cet article décrit l'écoulement convectif instationnaire d'un fluide supercritique en configuration de Rayleigh–Bénard. Des études antérieures bidimensionnelles ont montré une homogénéisation rapide de la température par effet piston et le développement d'une instabilité convective lorsque le nombre de Rayleigh local dépasse une valeur critique. Dans le présent travail, une méthode de volumes finis 3D d'ordre élevé a été développée, et à notre connaissance, nous montrons pour la première fois une instabilité convective tridimensionnelle dans un fluide supercritique. En examinant l'évolution temporelle de la structure du champ thermique, nous mettons en évidence des effets de coins et un comportement tridimensionnel de l'écoulement.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2004.01.009
Keywords: Fluid mechanics, Supercritical fluid, Rayleigh–Bénard configuration, 3D convective instability, Piston effect
Mot clés : Mécanique des fluides, Fluide supercritique, Configuration de Rayleigh–Bénard, Instabilité convective 3D, Effet piston

Gilbert Accary 1; Isabelle Raspo 1; Patrick Bontoux 1; Bernard Zappoli 2

1 MSNM-GP UMR 6181 CNRS, Les Universités d'Aix-Marseille, IMT – La Jetée, Technopôle de Château Gombert, 38, rue Frédéric Joliot Curie, 13451 Marseille cedex 20, France
2 CNES, 18, avenue Edouard Belin, 31401 Toulouse cedex 4, France
@article{CRMECA_2004__332_3_209_0,
     author = {Gilbert Accary and Isabelle Raspo and Patrick Bontoux and Bernard Zappoli},
     title = {Three-dimensional {Rayleigh{\textendash}B\'enard} instability in a supercritical fluid},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {209--216},
     publisher = {Elsevier},
     volume = {332},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crme.2004.01.009},
     language = {en},
}
TY  - JOUR
AU  - Gilbert Accary
AU  - Isabelle Raspo
AU  - Patrick Bontoux
AU  - Bernard Zappoli
TI  - Three-dimensional Rayleigh–Bénard instability in a supercritical fluid
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 209
EP  - 216
VL  - 332
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2004.01.009
LA  - en
ID  - CRMECA_2004__332_3_209_0
ER  - 
%0 Journal Article
%A Gilbert Accary
%A Isabelle Raspo
%A Patrick Bontoux
%A Bernard Zappoli
%T Three-dimensional Rayleigh–Bénard instability in a supercritical fluid
%J Comptes Rendus. Mécanique
%D 2004
%P 209-216
%V 332
%N 3
%I Elsevier
%R 10.1016/j.crme.2004.01.009
%G en
%F CRMECA_2004__332_3_209_0
Gilbert Accary; Isabelle Raspo; Patrick Bontoux; Bernard Zappoli. Three-dimensional Rayleigh–Bénard instability in a supercritical fluid. Comptes Rendus. Mécanique, Volume 332 (2004) no. 3, pp. 209-216. doi : 10.1016/j.crme.2004.01.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.01.009/

[1] K. Nitsche; J. Straub The critical hump of Cv under microgravity, results from D-Spacelab experiment ‘Wärmekapazität’, Proceeding of the 6th European Symp. on Material Sci. under Microgravity Conditions, 1987, p. 109 (ESA SP-256)

[2] H. Boukari; J.-N. Schaumeyer; M.-E. Briggs; R.-W. Gammon Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990), p. 2260

[3] A. Onuki; H. Hao; R.-A. Ferrel Fast adiabatic equilibration in a single-component fluid near the liquid–vapor critical point, Phys. Rev. A, Volume 41 (1990), p. 2256

[4] B. Zappoli; D. Bailly; Y. Garrabos; B. Le Neindre; P. Guenoun; D. Beysens Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990), p. 2224

[5] M. Assenheimer; V. Steinberg Rayleigh–Bénard convection near gas–liquid critical point, Phys. Rev. Lett., Volume 70 (1993), p. 3888

[6] H. Meyer; A.-B. Kogan Onset of convection in a very compressible fluid: the transient toward steady state, Phys. Rev. E, Volume 63 (2002), p. 056310

[7] M. Gitterman; V.-A. Steinberg Criteria for the commencement of convection in a liquid close to the critical point, High Temp. (USSR), Volume 8 (1970) no. 4, p. 754

[8] P. Carlès; B. Ugurtas The onset of free convection near the liquid–vapour critical point. Part I: Stationary initial state, Physica D, Volume 126 (1999), p. 69

[9] B. Zappoli; S. Amiroudine; P. Carlès; J. Ouazzani Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid, J. Fluid Mech., Volume 316 (1996), p. 53

[10] I. Raspo; B. Gilly; S. Amiroudine; P. Bontoux; B. Zappoli Simulation of convective instabilities inside a supercritical fluid layer under Rayleigh–Bénard configuration, J. Chem. Phys., Volume 96 (1999), p. 1059

[11] S. Amiroudine; P. Bontoux; P. Larroudé; B. Gilly; B. Zappoli Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below, J. Fluid Mech., Volume 442 (2001), p. 119

[12] A. Furukawa; A. Onuki Convective heat transport in compressible fluids, Phys. Rev. E, Volume 66 (2002), p. 016302

[13] S.-V. Patankar Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980

[14] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Rep. SAND 82-8257, December, Sandia National Lab., USA, 1982, p. 52

[15] Y. Li; M. Rudman Assessment of higher-order upwind schemes incorporating FCT for convection-dominated problems, Numer. Heat Transfer B, Volume 27 (1995), p. 1

[16] D.-S. Jang; R. Jetli; S. Acharya Comparison of the Piso, Simpler, and Simplec algorithms fort he treatment of the pressure–velocity coupling in steady flow problems, Numer. Heat Transfer, Volume 10 (1986), p. 209

[17] R. Barrett; M. Berry; T.-F. Chan; J. Demmel; J.-M. Donato; J. Dongarra; V. Eijkhout; R. Pozo; C. Romine; H. Van der Vorst Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994

[18] R. Becker; M. Braak Solution of a stationary benchmark problem for natural convection with large temperature difference, Int. J. Therm. Sci., Volume 41 (2002), p. 428

[19] S. Chandrasekar Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961

Cited by Sources:

Comments - Policy