[Instabilité tridimensionnelle de Rayleigh–Bénard dans un fluide supercritique]
This paper describes the unsteady convective flow of a supercritical fluid in the Rayleigh–Bénard configuration. Two-dimensional earlier studies reported fast temperature equilibrium due to the piston effect and the development of a convective instability when the local Rayleigh number exceeds a critical value. In the present work, a high order 3D finite volume method has been developed and optimized, and to our knowledge, we show for the first time a three-dimensional convective instability in a supercritical fluid. Inspecting the time-evolution of temperature field patterns, we exhibit corner effects and a three-dimensional behavior of the flow.
Cet article décrit l'écoulement convectif instationnaire d'un fluide supercritique en configuration de Rayleigh–Bénard. Des études antérieures bidimensionnelles ont montré une homogénéisation rapide de la température par effet piston et le développement d'une instabilité convective lorsque le nombre de Rayleigh local dépasse une valeur critique. Dans le présent travail, une méthode de volumes finis 3D d'ordre élevé a été développée, et à notre connaissance, nous montrons pour la première fois une instabilité convective tridimensionnelle dans un fluide supercritique. En examinant l'évolution temporelle de la structure du champ thermique, nous mettons en évidence des effets de coins et un comportement tridimensionnel de l'écoulement.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides, Fluide supercritique, Configuration de Rayleigh–Bénard, Instabilité convective 3D, Effet piston
Gilbert Accary 1 ; Isabelle Raspo 1 ; Patrick Bontoux 1 ; Bernard Zappoli 2
@article{CRMECA_2004__332_3_209_0, author = {Gilbert Accary and Isabelle Raspo and Patrick Bontoux and Bernard Zappoli}, title = {Three-dimensional {Rayleigh{\textendash}B\'enard} instability in a supercritical fluid}, journal = {Comptes Rendus. M\'ecanique}, pages = {209--216}, publisher = {Elsevier}, volume = {332}, number = {3}, year = {2004}, doi = {10.1016/j.crme.2004.01.009}, language = {en}, }
TY - JOUR AU - Gilbert Accary AU - Isabelle Raspo AU - Patrick Bontoux AU - Bernard Zappoli TI - Three-dimensional Rayleigh–Bénard instability in a supercritical fluid JO - Comptes Rendus. Mécanique PY - 2004 SP - 209 EP - 216 VL - 332 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2004.01.009 LA - en ID - CRMECA_2004__332_3_209_0 ER -
%0 Journal Article %A Gilbert Accary %A Isabelle Raspo %A Patrick Bontoux %A Bernard Zappoli %T Three-dimensional Rayleigh–Bénard instability in a supercritical fluid %J Comptes Rendus. Mécanique %D 2004 %P 209-216 %V 332 %N 3 %I Elsevier %R 10.1016/j.crme.2004.01.009 %G en %F CRMECA_2004__332_3_209_0
Gilbert Accary; Isabelle Raspo; Patrick Bontoux; Bernard Zappoli. Three-dimensional Rayleigh–Bénard instability in a supercritical fluid. Comptes Rendus. Mécanique, Volume 332 (2004) no. 3, pp. 209-216. doi : 10.1016/j.crme.2004.01.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.01.009/
[1] The critical hump of Cv under microgravity, results from D-Spacelab experiment ‘Wärmekapazität’, Proceeding of the 6th European Symp. on Material Sci. under Microgravity Conditions, 1987, p. 109 (ESA SP-256)
[2] Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990), p. 2260
[3] Fast adiabatic equilibration in a single-component fluid near the liquid–vapor critical point, Phys. Rev. A, Volume 41 (1990), p. 2256
[4] Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990), p. 2224
[5] Rayleigh–Bénard convection near gas–liquid critical point, Phys. Rev. Lett., Volume 70 (1993), p. 3888
[6] Onset of convection in a very compressible fluid: the transient toward steady state, Phys. Rev. E, Volume 63 (2002), p. 056310
[7] Criteria for the commencement of convection in a liquid close to the critical point, High Temp. (USSR), Volume 8 (1970) no. 4, p. 754
[8] The onset of free convection near the liquid–vapour critical point. Part I: Stationary initial state, Physica D, Volume 126 (1999), p. 69
[9] Thermoacoustic and buoyancy-driven transport in a square side-heated cavity filled with a near-critical fluid, J. Fluid Mech., Volume 316 (1996), p. 53
[10] Simulation of convective instabilities inside a supercritical fluid layer under Rayleigh–Bénard configuration, J. Chem. Phys., Volume 96 (1999), p. 1059
[11] Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below, J. Fluid Mech., Volume 442 (2001), p. 119
[12] Convective heat transport in compressible fluids, Phys. Rev. E, Volume 66 (2002), p. 016302
[13] Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, 1980
[14] S. Paolucci, On the filtering of sound from the Navier–Stokes equations, Rep. SAND 82-8257, December, Sandia National Lab., USA, 1982, p. 52
[15] Assessment of higher-order upwind schemes incorporating FCT for convection-dominated problems, Numer. Heat Transfer B, Volume 27 (1995), p. 1
[16] Comparison of the Piso, Simpler, and Simplec algorithms fort he treatment of the pressure–velocity coupling in steady flow problems, Numer. Heat Transfer, Volume 10 (1986), p. 209
[17] Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994
[18] Solution of a stationary benchmark problem for natural convection with large temperature difference, Int. J. Therm. Sci., Volume 41 (2002), p. 428
[19] Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961
- Introduction to Binary Mixtures at Supercritical Pressures and Coupled Heat and Mass Transfer, Coupled Heat and Mass Transfer in Binary Mixtures at Supercritical Pressures (2022), p. 1 | DOI:10.1007/978-981-16-7806-6_1
- Heat transfer mode shift to adiabatic thermalization in near-critical carbon dioxide with flow boiling in a microchannel, International Journal of Heat and Mass Transfer, Volume 188 (2022), p. 122629 | DOI:10.1016/j.ijheatmasstransfer.2022.122629
- An improved decoupling algorithm for low Mach number near-critical fluids, Computers Fluids, Volume 145 (2017), p. 8 | DOI:10.1016/j.compfluid.2016.12.009
- Numerical study of non-isothermal adsorption of Naphthalene in supercritical CO 2 : Behavior near critical point, The Journal of Supercritical Fluids, Volume 117 (2016), p. 203 | DOI:10.1016/j.supflu.2016.06.020
- Three-dimensional thermoconvection from a non-uniformly heated plate near the liquid–vapor critical point, International Journal of Thermal Sciences, Volume 89 (2015), p. 136 | DOI:10.1016/j.ijthermalsci.2014.10.015
- Rayleigh–Bénard convection in a supercritical fluid along its critical isochore in a shallow cavity, International Journal of Heat and Mass Transfer, Volume 55 (2012) no. 23-24, p. 7151 | DOI:10.1016/j.ijheatmasstransfer.2012.07.031
- Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection, Physical Review E, Volume 76 (2007) no. 6 | DOI:10.1103/physreve.76.061126
- A 3D finite volume method for the prediction of a supercritical fluid buoyant flow in a differentially heated cavity, Computers Fluids, Volume 35 (2006) no. 10, p. 1316 | DOI:10.1016/j.compfluid.2005.05.004
- Rayleigh–Bénard and schwarzschild instability in a supercritical fluid, Advances in Space Research, Volume 36 (2005) no. 1, p. 11 | DOI:10.1016/j.asr.2005.02.082
- Reverse transition to hydrodynamic stability through the Schwarzschild line in a supercritical fluid layer, Physical Review E, Volume 72 (2005) no. 3 | DOI:10.1103/physreve.72.035301
Cité par 10 documents. Sources : Crossref
Commentaires - Politique