[The effects of vibrations on inhomogeneous matter: some studies in weightlessness]
Vibrations induce velocity gradients in a density-inhomogeneous medium. The absence of earth gravity simplifies the various behaviors resulting from this situation. In granular media, a vibrating wall thermalizes the particles by means of collisions. According to the particle density, various behaviours can be observed: resonance with a single particle, (Knudsen) gas, ‘solid’ clusters. In fluids, quite interesting phenomena are related with ‘high frequency’ vibrations. Large-scale mean flows appear, which can generate various phenomena, especially near a liquid–vapour critical point: thermovibrational convection, modifications of the dynamics of liquid–solid or liquid–gas transitions.
Les vibrations induisent des gradients de vitesse dans un milieu où la densité est inhomogène. L'absence d'accélération terrestre simplifie les nombreux comportements qui en découlent. Ainsi, dans les milieux granulaires, une paroi vibrante thermalise par choc les particules. Suivant la densité volumique de celles-ci, on peut observer une résonance à une particule, un gaz (de Knudsen), des clusters « solides ». Dans les milieux fluides, et plus particulièrement près d'un point critique liquide–vapeur, des vibrations de « haute fréquence » peuvent induire des écoulements moyens à grande échelle, sous gradient thermique ou lors d'une transition liquide–solide ou liquide–gaz.
Keywords: Granular media, Vibrational phenomena, Liquid–gas critical point
Daniel Beysens 1, 2
@article{CRMECA_2004__332_5-6_457_0, author = {Daniel Beysens}, title = {L'effet des vibrations sur la mati\`ere inhomog\`ene : quelques \'etudes en apesanteur}, journal = {Comptes Rendus. M\'ecanique}, pages = {457--465}, publisher = {Elsevier}, volume = {332}, number = {5-6}, year = {2004}, doi = {10.1016/j.crme.2004.02.016}, language = {fr}, }
Daniel Beysens. L'effet des vibrations sur la matière inhomogène : quelques études en apesanteur. Comptes Rendus. Mécanique, Microgravity / La micropesanteur, Volume 332 (2004) no. 5-6, pp. 457-465. doi : 10.1016/j.crme.2004.02.016. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.016/
[1] Y. Garrabos, P. Palencia, C. Lecoutre, P. Evesque, D. Beysens, Coherent behavior of balls in a vibrated box, (2003) submitted for publication
[2] The thermodynamics of a single bead in a 1d container, Poudres & Grains, Volume 12 (2001), pp. 17-42 http://www.mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm
[3] G. Bossis, J.-C. Worms, PV=nRT, une loi physique réputée simple (video film of 8 minutes, Christophe Bargues Realisator, Planet 6/CNES, 2000)
[4] Cluster formation in a granular medium fluidised by vibrations in low gravity, Phys. Rev. Lett., Volume 83 (1999), pp. 440-443
[5] Mechanical behavior of granular gas and heterogeneous fluid systems submitted to vibrations under microgravity, J. Physique IV, Volume 11 (2001), pp. 49-56
[6] Parametric instability of a liquid–vapor interface close to the critical point, Phys. Rev. Lett., Volume 68 (1992), pp. 3160-3163
[7] Behaviour of a drop (bubble) in a pulsating flow near vibrating rigid surface, Proc. 1st International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology, ESA-SP 454, 2001, pp. 805-811
[8] Magnetic compensation of gravity forces in (p-) Hydrogen near its critical point : application to weightless conditions, Phys. Rev. E, Volume 62 (2000), pp. 460-476
[9] High frequency influence on thermocapillary flow in a floating-zone type system, Proc. 1st International Symposium on Microgravity Research & Applications in Physical Sciences and Biotechnology, ESA-SP 454, 2001, pp. 861-870
[10] Numerical investigation of deformations and flows in isothermal liquid bridge subject to high vibrations in zero-g conditions, Computers & Fluids, Volume 31 (2002), pp. 663-682
[11] Development of a steady relief at the interface of fluids in a vibrational field, Izv. Akad. Nauk SSSR Mekh. Zhidkh. i Gaza, Volume 6 (1987), pp. 8-13 (Translated in Fluid Dynamics, 86, 1987, pp. 849-854)
[12] Frozen wave induced by high frequency horizontal vibrations on a CO2 liquid–gas interface near the critical point, Phys. Rev. E, Volume 59 (1999), pp. 5440-5445
[13] Effect of oscillatory accelerations on two-phase fluids, Microgravity Sci. Technol., Volume 11 (1998), pp. 113-118
[14] The phase transition of gas and liquids, Physica A, Volume 281 (2000), pp. 361-380
[15] Effects of hydrodynamics on growth : spinodal decomposition under uniform shear flow, Phys. Rev. Lett., Volume 31 (1998), pp. 412-415
[16] Periodic order induced by horizontal vibrations in a two-dimensional assembly of heavy beads in water, Phys. Fluids, Volume 14 (2002), pp. 2350-2359
[17] Thermal Vibrational Convection, Wiley, New York, 1998
[18] An experimental study of the effect of vibrations on supercritical fluid transfer processes under microgravity conditions, Cosmic Res., Volume 39 (2001), pp. 187-191 (Translated from Kosm. Issled., 39, 2001, pp. 201-206)
[19] A. Dejoan, Private communication, 2000
[20] Density relaxation of a near-critical fluid in response to local heating and low frequency vibration in microgravity, Phys. Rev. E, Volume 65 (2002), pp. 37301-37304
Cited by Sources:
Comments - Policy