Comptes Rendus
Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
[Simulation numérique de la vitesse moyenne près d'une plaque de l'empilement d'un réfrigérateur thermoacoustique.]
Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 867-874.

Le champ de vitesse moyen à proximité d'une plaque appartenant à l'empilement d'un réfrigérateur thermoacoustique a été calculé numériquement par une simulation directe des équations de Navier–Stokes. Deux zones ont pu être distinguées. Dans la première, située aux extrémités de la plaque, le champ de vitesse moyen est vortical et résulte de la transition plaque/résonateur. Dans la seconde, située au-dessus de la plaque, le mouvement moyen est de type « acoustic streaming » et résulte de l'interaction entre l'onde acoustique et la surface de la plaque. L'influence de la distance inter-plaques dans l'empilement sur la forme de ce mouvement est étudiée.

A numerical simulation of the unsteady flow above one stack plate in a thermoacoustic refrigerator was performed. The second order mean velocity field was computed. Two regions could be distinguished. In the first region, located at the plate extremities, the mean flow is essentially vortical and results from the resonator/plate transition. In the second region, located above the plate, the mean velocity field corresponds to a streaming flow which results from the interaction of the acoustic wave with the plate boundaries. The effects of stack plates spacing on the streaming flow pattern is studied.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2004.07.010
Keywords: Computational fluid mechanics, Thermoacoustics, Streaming, Numerical simulation
Mot clés : Mécanique des fluides numérique, Thermoacoustique, Streaming, Simulation numérique
David Marx 1 ; Philippe Blanc-Benon 1

1 Centre acoustique, LMFA UMR 5509, École centrale de Lyon, 69134 Ecully cedex, France
@article{CRMECA_2004__332_11_867_0,
     author = {David Marx and Philippe Blanc-Benon},
     title = {Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {867--874},
     publisher = {Elsevier},
     volume = {332},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crme.2004.07.010},
     language = {en},
}
TY  - JOUR
AU  - David Marx
AU  - Philippe Blanc-Benon
TI  - Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 867
EP  - 874
VL  - 332
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2004.07.010
LA  - en
ID  - CRMECA_2004__332_11_867_0
ER  - 
%0 Journal Article
%A David Marx
%A Philippe Blanc-Benon
%T Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
%J Comptes Rendus. Mécanique
%D 2004
%P 867-874
%V 332
%N 11
%I Elsevier
%R 10.1016/j.crme.2004.07.010
%G en
%F CRMECA_2004__332_11_867_0
David Marx; Philippe Blanc-Benon. Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator. Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 867-874. doi : 10.1016/j.crme.2004.07.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.07.010/

[1] G.W. Swift Thermoacoustics engines, J. Acoust. Soc. Am., Volume 84 (1988), pp. 1145-1180

[2] S. Backhaus; G.W. Swift A thermoacoustic-Stirling heat engine: detailed study, J. Acoust. Soc. Am., Volume 107 (2000), pp. 3148-3166

[3] J.W. Rayleigh On the circulation of air in Kundt's tube, and on some allied acoustical problems, Philos. T. Roy. Soc., Volume 175 (1883), pp. 1-21

[4] N. Rott The influence of heat conduction on acoustic streaming, Z. Angew. Math. Phys., Volume 25 (1974), pp. 417-421

[5] R. Waxler Stationary velocity and pressure gradients in a thermoacoustic stack, J. Acoust. Soc. Am., Volume 109 (2001), pp. 2739-2750

[6] H.A. Bailliet; V. Gusev; R.A. Hiller Acoustic streaming in closed thermoacoustic devices, J. Acoust. Soc. Am., Volume 110 (2001), pp. 1808-1821

[7] M.F. Hamilton; Y.A. Ilinskii; E.A. Zabolostkaya Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, J. Acoust. Soc. Am., Volume 113 (2003), pp. 153-160

[8] L. Menguy; J. Gilbert Non-linear acoustic streaming accompanying a plane stationary wave in a guide, Acta Acust., Volume 86 (2000), pp. 249-259

[9] T. Yano Turbulent acoustic streaming excited by resonant oscillation shock waves in a closed tube, J. Acoust. Soc. Am., Volume 106 (1999), p. L7-L12

[10] D. Marx; Ph. Blanc-Benon Numerical simulation of the coupling between stack and heat exchangers in a thermoacoustic refrigerator, 9th AIAA-CEAS Aeroacoustic Conference, Hilton Head, SC, USA, 12–14 May, 2003 (AIAA Paper 2003–3150)

[11] H. Ishikawa; D.J. Mee Numerical investigations of flow and energy fields near a thermoacoustic couple, J. Acoust. Soc. Am., Volume 111 (2002), pp. 831-839

[12] W.L. Nyborg Acoustic streaming (W.P. Mason, ed.), Physical Acoustics, Academic Press, New York, 1965, pp. 265-331 (vol. 2B, Chapter 7)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Experimental and computational visualization of the flow field in a thermoacoustic stack

Philippe Blanc-Benon; Etienne Besnoin; Omar Knio

C. R. Méca (2003)


Vortex identification and tracking in unsteady flows

Arganthaël Berson; Marc Michard; Philippe Blanc-Benon

C. R. Méca (2009)


Numerical model of a thermoacoustic engine

Omar Hireche; Catherine Weisman; Diana Baltean-Carlès; ...

C. R. Méca (2010)