[Simulation numérique de la vitesse moyenne près d'une plaque de l'empilement d'un réfrigérateur thermoacoustique.]
Le champ de vitesse moyen à proximité d'une plaque appartenant à l'empilement d'un réfrigérateur thermoacoustique a été calculé numériquement par une simulation directe des équations de Navier–Stokes. Deux zones ont pu être distinguées. Dans la première, située aux extrémités de la plaque, le champ de vitesse moyen est vortical et résulte de la transition plaque/résonateur. Dans la seconde, située au-dessus de la plaque, le mouvement moyen est de type « acoustic streaming » et résulte de l'interaction entre l'onde acoustique et la surface de la plaque. L'influence de la distance inter-plaques dans l'empilement sur la forme de ce mouvement est étudiée.
A numerical simulation of the unsteady flow above one stack plate in a thermoacoustic refrigerator was performed. The second order mean velocity field was computed. Two regions could be distinguished. In the first region, located at the plate extremities, the mean flow is essentially vortical and results from the resonator/plate transition. In the second region, located above the plate, the mean velocity field corresponds to a streaming flow which results from the interaction of the acoustic wave with the plate boundaries. The effects of stack plates spacing on the streaming flow pattern is studied.
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, Thermoacoustique, Streaming, Simulation numérique
David Marx 1 ; Philippe Blanc-Benon 1
@article{CRMECA_2004__332_11_867_0, author = {David Marx and Philippe Blanc-Benon}, title = {Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator}, journal = {Comptes Rendus. M\'ecanique}, pages = {867--874}, publisher = {Elsevier}, volume = {332}, number = {11}, year = {2004}, doi = {10.1016/j.crme.2004.07.010}, language = {en}, }
TY - JOUR AU - David Marx AU - Philippe Blanc-Benon TI - Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator JO - Comptes Rendus. Mécanique PY - 2004 SP - 867 EP - 874 VL - 332 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2004.07.010 LA - en ID - CRMECA_2004__332_11_867_0 ER -
David Marx; Philippe Blanc-Benon. Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator. Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 867-874. doi : 10.1016/j.crme.2004.07.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.07.010/
[1] Thermoacoustics engines, J. Acoust. Soc. Am., Volume 84 (1988), pp. 1145-1180
[2] A thermoacoustic-Stirling heat engine: detailed study, J. Acoust. Soc. Am., Volume 107 (2000), pp. 3148-3166
[3] On the circulation of air in Kundt's tube, and on some allied acoustical problems, Philos. T. Roy. Soc., Volume 175 (1883), pp. 1-21
[4] The influence of heat conduction on acoustic streaming, Z. Angew. Math. Phys., Volume 25 (1974), pp. 417-421
[5] Stationary velocity and pressure gradients in a thermoacoustic stack, J. Acoust. Soc. Am., Volume 109 (2001), pp. 2739-2750
[6] Acoustic streaming in closed thermoacoustic devices, J. Acoust. Soc. Am., Volume 110 (2001), pp. 1808-1821
[7] Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, J. Acoust. Soc. Am., Volume 113 (2003), pp. 153-160
[8] Non-linear acoustic streaming accompanying a plane stationary wave in a guide, Acta Acust., Volume 86 (2000), pp. 249-259
[9] Turbulent acoustic streaming excited by resonant oscillation shock waves in a closed tube, J. Acoust. Soc. Am., Volume 106 (1999), p. L7-L12
[10] Numerical simulation of the coupling between stack and heat exchangers in a thermoacoustic refrigerator, 9th AIAA-CEAS Aeroacoustic Conference, Hilton Head, SC, USA, 12–14 May, 2003 (AIAA Paper 2003–3150)
[11] Numerical investigations of flow and energy fields near a thermoacoustic couple, J. Acoust. Soc. Am., Volume 111 (2002), pp. 831-839
[12] Acoustic streaming (W.P. Mason, ed.), Physical Acoustics, Academic Press, New York, 1965, pp. 265-331 (vol. 2B, Chapter 7)
- Gravity effects in a compact thermoacoustic cavity, The Journal of the Acoustical Society of America, Volume 157 (2025) no. 2, p. 833 | DOI:10.1121/10.0035581
- Modeling of a Thermoacoustic Flue Gas Analyzer, Journal of Thermophysics and Heat Transfer (2024), p. 1 | DOI:10.2514/1.t7027
- On the nonlinear behaviour of oscillatory flow in a high pressure amplitude standing-wave thermoacoustic heat engine, International Journal of Heat and Mass Transfer, Volume 201 (2023), p. 123595 | DOI:10.1016/j.ijheatmasstransfer.2022.123595
- Numerical modeling of standing wave thermoacoustic devices–A review, International Journal of Refrigeration, Volume 146 (2023), p. 47 | DOI:10.1016/j.ijrefrig.2022.09.024
- Transient Thermofluid simulation of a Hybrid Thermoacoustic system, International Journal of Heat and Mass Transfer, Volume 183 (2022), p. 122181 | DOI:10.1016/j.ijheatmasstransfer.2021.122181
- Numerical Modeling and Performance Evaluation of Standing Wave Thermoacoustic Refrigerators with a Multi-Layered Stack, Energies, Volume 13 (2020) no. 17, p. 4360 | DOI:10.3390/en13174360
- Coupled model and flow characteristics of thermoacoustic refrigerators, Engineering Research Express, Volume 2 (2020) no. 2, p. 025016 | DOI:10.1088/2631-8695/ab8ba5
- A 3D investigation of thermoacoustic fields in a square stack, International Journal of Heat and Mass Transfer, Volume 108 (2017), p. 292 | DOI:10.1016/j.ijheatmasstransfer.2016.12.015
- Principles of thermoacoustic energy harvesting, The European Physical Journal Special Topics, Volume 224 (2015) no. 14-15, p. 2967 | DOI:10.1140/epjst/e2015-02601-x
- Computational Fluid Dynamics Simulation of a Thermoacoustic Refrigerator, Journal of Thermophysics and Heat Transfer, Volume 28 (2014) no. 1, p. 78 | DOI:10.2514/1.t4150
- Fast acoustic streaming in standing waves: Generation of an additional outer streaming cell, The Journal of the Acoustical Society of America, Volume 134 (2013) no. 3, p. 1791 | DOI:10.1121/1.4817888
- Two-dimensional numerical simulations of nonlinear acoustic streaming in standing waves, Wave Motion, Volume 50 (2013) no. 5, pp. 955-963 | DOI:10.1016/j.wavemoti.2013.03.004 | Zbl:1454.76035
- , 10th International Energy Conversion Engineering Conference (2012) | DOI:10.2514/6.2012-4233
- CFD simulation of thermoacoustic cooling, International Journal of Heat and Mass Transfer, Volume 53 (2010) no. 19-20, pp. 3940-3946 | DOI:10.1016/j.ijheatmasstransfer.2010.05.012 | Zbl:1194.80090
- Application of particle image velocimetry measurement techniques to study turbulence characteristics of oscillatory flows around parallel-plate structures in thermoacoustic devices, Measurement Science and Technology, Volume 21 (2010) no. 3, p. 035403 | DOI:10.1088/0957-0233/21/3/035403
- Transient temperature profile inside thermoacoustic refrigerators, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 21-22, pp. 4986-4996 | DOI:10.1016/j.ijheatmasstransfer.2009.03.075 | Zbl:1176.80022
- Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator, The Journal of the Acoustical Society of America, Volume 118 (2005) no. 5, p. 2993 | DOI:10.1121/1.2063087
Cité par 17 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier