Comptes Rendus
Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
[Simulation numérique de la vitesse moyenne près d'une plaque de l'empilement d'un réfrigérateur thermoacoustique.]
Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 867-874.

Le champ de vitesse moyen à proximité d'une plaque appartenant à l'empilement d'un réfrigérateur thermoacoustique a été calculé numériquement par une simulation directe des équations de Navier–Stokes. Deux zones ont pu être distinguées. Dans la première, située aux extrémités de la plaque, le champ de vitesse moyen est vortical et résulte de la transition plaque/résonateur. Dans la seconde, située au-dessus de la plaque, le mouvement moyen est de type « acoustic streaming » et résulte de l'interaction entre l'onde acoustique et la surface de la plaque. L'influence de la distance inter-plaques dans l'empilement sur la forme de ce mouvement est étudiée.

A numerical simulation of the unsteady flow above one stack plate in a thermoacoustic refrigerator was performed. The second order mean velocity field was computed. Two regions could be distinguished. In the first region, located at the plate extremities, the mean flow is essentially vortical and results from the resonator/plate transition. In the second region, located above the plate, the mean velocity field corresponds to a streaming flow which results from the interaction of the acoustic wave with the plate boundaries. The effects of stack plates spacing on the streaming flow pattern is studied.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2004.07.010
Keywords: Computational fluid mechanics, Thermoacoustics, Streaming, Numerical simulation
Mots-clés : Mécanique des fluides numérique, Thermoacoustique, Streaming, Simulation numérique

David Marx 1 ; Philippe Blanc-Benon 1

1 Centre acoustique, LMFA UMR 5509, École centrale de Lyon, 69134 Ecully cedex, France
@article{CRMECA_2004__332_11_867_0,
     author = {David Marx and Philippe Blanc-Benon},
     title = {Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {867--874},
     publisher = {Elsevier},
     volume = {332},
     number = {11},
     year = {2004},
     doi = {10.1016/j.crme.2004.07.010},
     language = {en},
}
TY  - JOUR
AU  - David Marx
AU  - Philippe Blanc-Benon
TI  - Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
JO  - Comptes Rendus. Mécanique
PY  - 2004
SP  - 867
EP  - 874
VL  - 332
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2004.07.010
LA  - en
ID  - CRMECA_2004__332_11_867_0
ER  - 
%0 Journal Article
%A David Marx
%A Philippe Blanc-Benon
%T Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator
%J Comptes Rendus. Mécanique
%D 2004
%P 867-874
%V 332
%N 11
%I Elsevier
%R 10.1016/j.crme.2004.07.010
%G en
%F CRMECA_2004__332_11_867_0
David Marx; Philippe Blanc-Benon. Computation of the mean velocity field above a stack plate in a thermoacoustic refrigerator. Comptes Rendus. Mécanique, Volume 332 (2004) no. 11, pp. 867-874. doi : 10.1016/j.crme.2004.07.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.07.010/

[1] G.W. Swift Thermoacoustics engines, J. Acoust. Soc. Am., Volume 84 (1988), pp. 1145-1180

[2] S. Backhaus; G.W. Swift A thermoacoustic-Stirling heat engine: detailed study, J. Acoust. Soc. Am., Volume 107 (2000), pp. 3148-3166

[3] J.W. Rayleigh On the circulation of air in Kundt's tube, and on some allied acoustical problems, Philos. T. Roy. Soc., Volume 175 (1883), pp. 1-21

[4] N. Rott The influence of heat conduction on acoustic streaming, Z. Angew. Math. Phys., Volume 25 (1974), pp. 417-421

[5] R. Waxler Stationary velocity and pressure gradients in a thermoacoustic stack, J. Acoust. Soc. Am., Volume 109 (2001), pp. 2739-2750

[6] H.A. Bailliet; V. Gusev; R.A. Hiller Acoustic streaming in closed thermoacoustic devices, J. Acoust. Soc. Am., Volume 110 (2001), pp. 1808-1821

[7] M.F. Hamilton; Y.A. Ilinskii; E.A. Zabolostkaya Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width, J. Acoust. Soc. Am., Volume 113 (2003), pp. 153-160

[8] L. Menguy; J. Gilbert Non-linear acoustic streaming accompanying a plane stationary wave in a guide, Acta Acust., Volume 86 (2000), pp. 249-259

[9] T. Yano Turbulent acoustic streaming excited by resonant oscillation shock waves in a closed tube, J. Acoust. Soc. Am., Volume 106 (1999), p. L7-L12

[10] D. Marx; Ph. Blanc-Benon Numerical simulation of the coupling between stack and heat exchangers in a thermoacoustic refrigerator, 9th AIAA-CEAS Aeroacoustic Conference, Hilton Head, SC, USA, 12–14 May, 2003 (AIAA Paper 2003–3150)

[11] H. Ishikawa; D.J. Mee Numerical investigations of flow and energy fields near a thermoacoustic couple, J. Acoust. Soc. Am., Volume 111 (2002), pp. 831-839

[12] W.L. Nyborg Acoustic streaming (W.P. Mason, ed.), Physical Acoustics, Academic Press, New York, 1965, pp. 265-331 (vol. 2B, Chapter 7)

  • Diana Baltean-Carlès; Yann Fraigneau; Catherine Weisman Gravity effects in a compact thermoacoustic cavity, The Journal of the Acoustical Society of America, Volume 157 (2025) no. 2, p. 833 | DOI:10.1121/10.0035581
  • Mohab Abo Elseoud; Ahmed Abd El-Rahman; Hindawi Saleh Modeling of a Thermoacoustic Flue Gas Analyzer, Journal of Thermophysics and Heat Transfer (2024), p. 1 | DOI:10.2514/1.t7027
  • Mohammad Ja'fari; Artur J. Jaworski On the nonlinear behaviour of oscillatory flow in a high pressure amplitude standing-wave thermoacoustic heat engine, International Journal of Heat and Mass Transfer, Volume 201 (2023), p. 123595 | DOI:10.1016/j.ijheatmasstransfer.2022.123595
  • Umar Nawaz Bhatti; Salem Bashmal; Sikandar Khan; Rached Ben-Mansour Numerical modeling of standing wave thermoacoustic devices–A review, International Journal of Refrigeration, Volume 146 (2023), p. 47 | DOI:10.1016/j.ijrefrig.2022.09.024
  • Govind Harikumar; Lu Shen; Kai Wang; Swapnil Dubey; Fei Duan Transient Thermofluid simulation of a Hybrid Thermoacoustic system, International Journal of Heat and Mass Transfer, Volume 183 (2022), p. 122181 | DOI:10.1016/j.ijheatmasstransfer.2021.122181
  • Umar Nawaz Bhatti; Salem Bashmal; Sikandar Khan; Rached Ben-Mansour Numerical Modeling and Performance Evaluation of Standing Wave Thermoacoustic Refrigerators with a Multi-Layered Stack, Energies, Volume 13 (2020) no. 17, p. 4360 | DOI:10.3390/en13174360
  • Yinpeng Wang; Shihong Zhang; Qiqi Yan; Fang Tang Coupled model and flow characteristics of thermoacoustic refrigerators, Engineering Research Express, Volume 2 (2020) no. 2, p. 025016 | DOI:10.1088/2631-8695/ab8ba5
  • Ahmed I. Abd El-Rahman; Waleed A. Abdelfattah; Mahmoud A. Fouad A 3D investigation of thermoacoustic fields in a square stack, International Journal of Heat and Mass Transfer, Volume 108 (2017), p. 292 | DOI:10.1016/j.ijheatmasstransfer.2016.12.015
  • A.W. Avent; C.R. Bowen Principles of thermoacoustic energy harvesting, The European Physical Journal Special Topics, Volume 224 (2015) no. 14-15, p. 2967 | DOI:10.1140/epjst/e2015-02601-x
  • Ahmed I. Abd El-Rahman; Ehab Abdel-Rahman Computational Fluid Dynamics Simulation of a Thermoacoustic Refrigerator, Journal of Thermophysics and Heat Transfer, Volume 28 (2014) no. 1, p. 78 | DOI:10.2514/1.t4150
  • Ida Reyt; Virginie Daru; Hélène Bailliet; Solène Moreau; Jean-Christophe Valière; Diana Baltean-Carlès; Catherine Weisman Fast acoustic streaming in standing waves: Generation of an additional outer streaming cell, The Journal of the Acoustical Society of America, Volume 134 (2013) no. 3, p. 1791 | DOI:10.1121/1.4817888
  • Virginie Daru; Diana Baltean-Carlès; Catherine Weisman; Philippe Debesse; Gurunath Gandikota Two-dimensional numerical simulations of nonlinear acoustic streaming in standing waves, Wave Motion, Volume 50 (2013) no. 5, pp. 955-963 | DOI:10.1016/j.wavemoti.2013.03.004 | Zbl:1454.76035
  • Ahmed Abd El-Rahman; Ehab Abdel-Rahman, 10th International Energy Conversion Engineering Conference (2012) | DOI:10.2514/6.2012-4233
  • Florian Zink; Jeffrey Vipperman; Laura Schaefer CFD simulation of thermoacoustic cooling, International Journal of Heat and Mass Transfer, Volume 53 (2010) no. 19-20, pp. 3940-3946 | DOI:10.1016/j.ijheatmasstransfer.2010.05.012 | Zbl:1194.80090
  • Xiaoan Mao; Artur J Jaworski Application of particle image velocimetry measurement techniques to study turbulence characteristics of oscillatory flows around parallel-plate structures in thermoacoustic devices, Measurement Science and Technology, Volume 21 (2010) no. 3, p. 035403 | DOI:10.1088/0957-0233/21/3/035403
  • Pierrick Lotton; Philippe Blanc-Benon; Michel Bruneau; Vitaly Gusev; Serge Duffourd; Mikhail Mironov; Gaelle Poignand Transient temperature profile inside thermoacoustic refrigerators, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 21-22, pp. 4986-4996 | DOI:10.1016/j.ijheatmasstransfer.2009.03.075 | Zbl:1176.80022
  • David Marx; Philippe Blanc-Benon Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator, The Journal of the Acoustical Society of America, Volume 118 (2005) no. 5, p. 2993 | DOI:10.1121/1.2063087

Cité par 17 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: